|国家科技期刊平台
首页|期刊导航|哈尔滨工程大学学报|基于Co-CEM的柔性车间调度优化算法

基于Co-CEM的柔性车间调度优化算法OA北大核心CSTPCD

Flexible job-shop scheduling optimization algorithm based on Co-CEM

中文摘要英文摘要

为解决船舶制造中的柔性作业车间调度问题,本文提出一种基于协同进化策略的交叉熵算法来提高船舶制造过程的效率.协同进化策略弥补了交叉熵算法局部搜索能力较弱的问题,提高解的质量;提出基于主动调度的遗传解码算法,保证得到的解属于活动调度;遗传操作将相关调度信息保存在基因中,有效提高算法的搜索效率.本文通过实验对比遗传解码与常用的插入式解码算法,验证了解码算法的有效性及其提升能力,与现有具有竞争力的算法进行对比,证明了基于协同进化策略的交叉熵算法的高效性与优越性,给出了优质的甘特图.

This paper proposes a cooperative coevolution-based CEM(Co-CEM)algorithm to solve the flexible job-shop scheduling problem(FJSP)in shipbuilding and improve the efficiency of the shipbuilding process.The co-e-volution strategy makes up for the weak local search capability of the cross-entropy method(CEM),thus achieving improved solution quality.In this paper,a genetic decoding algorithm based on active scheduling is proposed,in which the active scheduling operation ensures that the solutions obtained belong to active scheduling,and the genet-ic operation saves relevant scheduling information in the gene,effectively improving the search efficiency of the al-gorithm.The effectiveness of the proposed decoding algorithm and its improvement ability were verified by compa-ring the genetic decoding algorithm with the commonly used plug-in decoding algorithm via experiments.The com-parison with existing competitive algorithms proves the efficiency and superiority of Co-CEM,thereby yielding a cor-responding high-quality Gantt chart.

张政;徐鹏;孟宇龙;卢中玉;邹家睿

哈尔滨工程大学,计算机科学与技术学院,黑龙江 哈尔滨 150001||中国船舶重工集团有限公司,江苏 连云港 222006中国船舶重工集团有限公司,江苏 连云港 222006哈尔滨工程大学,计算机科学与技术学院,黑龙江 哈尔滨 150001

机械工程

组合优化柔性作业车间调度进化算法交叉熵算法Pareto支配协同进化主动调度船舶制造

combinatorial optimizationflexible job shop schedulingevolutionary algorithmcross-entropy methodpareto dominationco-evolutionactive schedulingshipbuilding

《哈尔滨工程大学学报》 2024 (003)

480-488 / 9

国家重点研发计划(2020YFB1712600).

10.11990/jheu.202203052

评论