| 注册
首页|期刊导航|河南农业大学学报|基于深度学习的玉米田间杂草识别模型研究

基于深度学习的玉米田间杂草识别模型研究

刘冰杰 周雅楠 周小辉 丁力 李赫 王万章

河南农业大学学报2024,Vol.58Issue(2):279-286,8.
河南农业大学学报2024,Vol.58Issue(2):279-286,8.DOI:10.16445/j.cnki.1000-2340.20231110.002

基于深度学习的玉米田间杂草识别模型研究

Deep learning-based weed recognition model in the maize field

刘冰杰 1周雅楠 1周小辉 2丁力 3李赫 3王万章3

作者信息

  • 1. 河南农业大学信息与管理科学学院,河南郑州 450002
  • 2. 河南豪久科技有限公司,河南许昌 461100
  • 3. 河南农业大学机电工程学院,河南郑州 450002
  • 折叠

摘要

Abstract

[Objective]In response to the complexity and low accuracy of existing field weed recognition models,a corn field weed identification algorithm is studied.By accurately identifying weed images,theoretical and technical support is provided to improve the effectiveness of field weed control.[Method]In this paper,based on deep learning method,four types of common weeds in maize field,bluegrass,chenopodium album,clrsumsetosum and sedge were selected as experimental data sets,and the YOLOv3,YOLOv5 and SSD target detection models were established and trained.[Result]The results showed that the YOLOv3 model achieved precision of 0.734,mean recall of 0.814,mean F1 score of 0.789,and mAP value of 0.972;the YOLOv5 model achieved precision of 0.914,mean recall of 0.967,mean F1 score of 0.942 and mAP of 0.961;the mAP value of the SSD model is 0.907.[Conclu-sion]The test results show that the mAP value of YOLOv5 model is 0.961,and all of its indexes are bet-ter than those of YOLOv3 and SSD target detection model,so YOLOv5 model is more suitable for the au-tomated operation of accurate herbicide spraying in crop field.

关键词

深度学习/玉米/杂草识别/目标检测模型

Key words

deep learning/corn/weed recognition/target detection model

分类

农业工程

引用本文复制引用

刘冰杰,周雅楠,周小辉,丁力,李赫,王万章..基于深度学习的玉米田间杂草识别模型研究[J].河南农业大学学报,2024,58(2):279-286,8.

基金项目

国家现代农业产业技术体系建设专项项目(CARS-04-PS28) (CARS-04-PS28)

河南省科技攻关项目(232102211087,222102110032) (232102211087,222102110032)

河南省科技研发计划联合基金项目(232103810019) (232103810019)

河南农业大学学报

OA北大核心CSTPCD

1000-2340

访问量0
|
下载量0
段落导航相关论文