| 注册
首页|期刊导航|黑龙江科技大学学报|融合机器视觉和无监督域适应的轻型弱小目标检测方法

融合机器视觉和无监督域适应的轻型弱小目标检测方法

武狄 张哲 李强

黑龙江科技大学学报2024,Vol.34Issue(2):329-334,6.
黑龙江科技大学学报2024,Vol.34Issue(2):329-334,6.DOI:10.3969/j.issn.2095-7262.2024.02.025

融合机器视觉和无监督域适应的轻型弱小目标检测方法

Light weak target detection method combining machine vision and unsupervised domain adaptation

武狄 1张哲 1李强1

作者信息

  • 1. 黑龙江科技大学 计算机与信息工程学院,哈尔滨 150022
  • 折叠

摘要

Abstract

This paper proposes a light and weak target detection method combining machine vision and unsupervised domain adaptation to address the difficulty of light and weak target detection and track-ing due to small size and weak brightness.The method works by using Gamma correction method to com-pensate for the light and small targets with weak brightness in the image in order to enhance the clarity of the target contour;extracting and fusing feature saliency maps to obtain the target area of the image;training the network by using original image set as the source domain sample,and conducting the target detection with unsupervised domain adaptation by using the target area as the target domain sample through YOLO-V3 network.The results show that the precision accuracy of object extraction improves by 2.05%,and the accuracy of object detection is up to 82.36%with the proposed method,which increa-ses by 2.1% of the accuracy with other methods,as which verifies its better detection effectiveness on the light and weak target detection.

关键词

机器视觉/Gamma校正/目标区域提取/YOLO-V3网络/目标检测

Key words

machine vision/gamma correction/target area extraction/YOLO-V3 network/object detection

分类

信息技术与安全科学

引用本文复制引用

武狄,张哲,李强..融合机器视觉和无监督域适应的轻型弱小目标检测方法[J].黑龙江科技大学学报,2024,34(2):329-334,6.

基金项目

黑龙江省省属高校基本科研业务费项目(7020000070226) (7020000070226)

黑龙江科技大学学报

OACSTPCD

2095-7262

访问量0
|
下载量0
段落导航相关论文