| 注册
首页|期刊导航|电力系统保护与控制|考虑SOC优化设定的电-氢混合储能系统的运行优化

考虑SOC优化设定的电-氢混合储能系统的运行优化

姜智霖 郝峰杰 袁志昌 朱小毅 郭佩乾 潘海宁 项淼毅 贺宁怡

电力系统保护与控制2024,Vol.52Issue(8):65-76,12.
电力系统保护与控制2024,Vol.52Issue(8):65-76,12.DOI:10.19783/j.cnki.pspc.231371

考虑SOC优化设定的电-氢混合储能系统的运行优化

Optimal operation of an electro-hydrogen hybrid energy storage system considering SOC optimization setting

姜智霖 1郝峰杰 2袁志昌 1朱小毅 2郭佩乾 1潘海宁 2项淼毅 1贺宁怡1

作者信息

  • 1. 清华大学电机工程与应用电子技术系,北京 100084
  • 2. 中国长江三峡集团有限公司,北京 100038
  • 折叠

摘要

Abstract

To enhance the efficiency of renewable energy utilization and minimize operational costs within the source-grid-load-storage system with electro-hydrogen hybrid energy storage,this paper presents an optimal operation method of electro-hydrogen hybrid energy storage system considering an SOC optimization setting to realize the day-ahead real-time optimal scheduling of the system.First,a method for SOC optimization setting of high-capacity energy storage systems is proposed to determine the day-ahead SOC optimization settings at the start and end of each day for the energy storage system.Subsequently,based on a twin delayed deep deterministic policy gradient algorithm,a day-ahead real-time optimal scheduling model training method is proposed.A real-time model for source-network-load energy storage system is established based on the optimized set points of energy storage SOCs and day-ahead operation data to achieve day-ahead real-time integrated optimal scheduling.Finally,the effectiveness of the proposed method is validated through case study results.The result indicates that the method proves to be efficient in enhancing system revenue,while the day-ahead real-time optimal scheduling model mitigates the impact of prediction errors.

关键词

混合储能/氢储能系统/SOC优化设定/深度强化学习/日前-实时调度

Key words

hybrid energy storage/hydrogen energy storage system/SOC optimization setting/deep reinforcement learning/day-ahead real-time scheduling

引用本文复制引用

姜智霖,郝峰杰,袁志昌,朱小毅,郭佩乾,潘海宁,项淼毅,贺宁怡..考虑SOC优化设定的电-氢混合储能系统的运行优化[J].电力系统保护与控制,2024,52(8):65-76,12.

基金项目

This work is supported by the Special Fund of National Natural Science Foundation of China(No.52241701). 国家自然科学基金专项项目资助(52241701) (No.52241701)

中国长江三峡集团有限公司科研项目资助(202103417) (202103417)

电力系统保护与控制

OA北大核心CSTPCD

1674-3415

访问量0
|
下载量0
段落导航相关论文