| 注册
首页|期刊导航|计算机应用与软件|基于改进时空图卷积网络的人员交互行为识别

基于改进时空图卷积网络的人员交互行为识别

雷静思 刘双广 刘乔寿 王祥雪

计算机应用与软件2024,Vol.41Issue(4):151-158,8.
计算机应用与软件2024,Vol.41Issue(4):151-158,8.DOI:10.3969/j.issn.1000-386x.2024.04.023

基于改进时空图卷积网络的人员交互行为识别

HUMAN INTERACTION BEHAVIOR RECOGNITION BASED ON IMPROVED SPATIAL TEMPROAL GRAPH CONVOLUTION NETWORK

雷静思 1刘双广 2刘乔寿 1王祥雪3

作者信息

  • 1. 重庆邮电大学通信与信息工程学院 重庆 400065||重庆高校市级光通信与网络重点实验室 重庆 400065||泛在感知与互联重庆市重点实验室 重庆 400065
  • 2. 重庆邮电大学通信与信息工程学院 重庆 400065||重庆高校市级光通信与网络重点实验室 重庆 400065||泛在感知与互联重庆市重点实验室 重庆 400065||高新兴科技集团股份有限公司 广东广州 510700
  • 3. 高新兴科技集团股份有限公司 广东广州 510700
  • 折叠

摘要

Abstract

Aimed at the problems that the recognition accuracy and model performance cannot be satisfied by multi-modal data fusion method for human interaction behavior recognition,a human interaction behavior recognition method based on improved spatial temporal graph convolutional network is proposed.The single-modal skeleton data was introduced into the cascaded densely spatial temporal graph convolutional block network to obtain rich spatial-temporal feature information and improve the feature reuse rate.An enhanced spatial temporal convolution network(EST-GCN)unit was designed to improve the information representation ability of the network between joints.A motion characteristic factor was introduced to measure the importance of different joints in the limbs to improve the model recognition effect.The experimental results on the Kinetics dataset and the case-handling area scene dataset show that the proposed method has certain advantages in the recognition effect,and the method is very competitive in model complexity and operating ef-ficiency.

关键词

交互行为/时空图卷积网络/骨架数据/密集

Key words

Interactive behavior/Spatial temporal graph convolution network/Skeleton data/Densely

分类

信息技术与安全科学

引用本文复制引用

雷静思,刘双广,刘乔寿,王祥雪..基于改进时空图卷积网络的人员交互行为识别[J].计算机应用与软件,2024,41(4):151-158,8.

基金项目

国家自然科学基金项目(61901071) (61901071)

重庆市自然科学基金重点项目(cstc2020jcyj-zdxmX0024). (cstc2020jcyj-zdxmX0024)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文