| 注册
首页|期刊导航|计算机应用与软件|基于深度强化学习的高铁客票动态定价算法

基于深度强化学习的高铁客票动态定价算法

毕文杰 陈功

计算机应用与软件2024,Vol.41Issue(4):228-235,261,9.
计算机应用与软件2024,Vol.41Issue(4):228-235,261,9.DOI:10.3969/j.issn.1000-386x.2024.04.035

基于深度强化学习的高铁客票动态定价算法

DYNAMIC PRICING ALGORITHM FOR HIGH-SPEED RAIL TICKETS BASED ON DEEP REINFORCEMENT LEARNING

毕文杰 1陈功1

作者信息

  • 1. 中南大学商学院 湖南长沙 410083
  • 折叠

摘要

Abstract

This paper aims to solve the dynamic pricing problem of high-speed rail tickets under the unknown demand function.To maximize the expected return of a single train,we constructed a Markov multi-stage decision model and designed a DQN(Deep Q Net)reinforcement learning framework to find the optimal strategy for dynamic pricing.The algorithm used the day's income as the reward,and approximated the expected optimal return of all state-action combinations using a neural network.A high-speed rail passenger transport demand simulator was developed based on the market dynamics and passenger behavior for verifying the performance of the algorithm.The experimental results show that the agent dynamic pricing strategy can adjust the price flexibly under different demand levels,and its performance is close to the theoretical upper bound and better than the comparison strategy significantly.

关键词

收益管理/高铁客票定价/动态定价/动态规划/强化学习/环境模拟算法

Key words

Revenue management/High-speed rail tickets pricing/Dynamic pricing/Dynamic planning/Rein-forcement learning/Environment simulation algorithm

分类

信息技术与安全科学

引用本文复制引用

毕文杰,陈功..基于深度强化学习的高铁客票动态定价算法[J].计算机应用与软件,2024,41(4):228-235,261,9.

基金项目

国家自然科学基金项目(71871231,91646115). (71871231,91646115)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文