| 注册
首页|期刊导航|江西科学|基于YOLOv5s改进的无人机航拍图像车辆检测模型

基于YOLOv5s改进的无人机航拍图像车辆检测模型

张立亭 刘丞丰 罗亦泳 邓先金 张紫怡

江西科学2024,Vol.42Issue(2):378-387,10.
江西科学2024,Vol.42Issue(2):378-387,10.DOI:10.13990/j.issn1001-3679.2024.02.025

基于YOLOv5s改进的无人机航拍图像车辆检测模型

Improved UAV Aerial Image Vehicle Detection Model Based on YOLOv5s

张立亭 1刘丞丰 1罗亦泳 1邓先金 1张紫怡1

作者信息

  • 1. 东华理工大学测绘与空间信息工程学院,330013,南昌
  • 折叠

摘要

Abstract

Aiming at the problems of serious vehicle occlusion,many small-scale targets,complex background information,and serious false detection and missed detection in UAV aerial image vehi-cle detection tasks,this paper proposes a vehicle target detection model based on YOLOv5.Firstly,a small target feature detection layer is added to enhance the complex extraction of effective location feature information in the shallow feature map,so as to alleviate the problem of lack of dense small target feature information caused by deep convolution.Secondly,GSConv convolution and VOVGSC-SP modules are used in Neck to lighten the model and improve the detection accuracy.Thirdly,Mi-sh is used as the global activation function to improve the propagation and expression ability of fea-ture information in the deep network.Then,for the model's positioning accuracy of the detection target,EIoU is used as the regression box to locate the loss.Finally,the Transformer module is in-troduced in Backbone to enhance the model receptive field,improve the extraction ability of key point information,and enhance the anti-interference ability of the model.Experimental results show that the average detection accuracy(mAP)of the final improved model reaches 83.8%,which is 5.5%higher than that of the original YOLOv5s model,and the detection accuracy of small targets is significantly improved.

关键词

深度学习/卷积神经网络/车辆检测/YOLOv5/损失函数/Transformer

Key words

in-depth learning/convolutional neural networks/vehicle inspection/YOLOv5/loss func-tion/Transformer

分类

信息技术与安全科学

引用本文复制引用

张立亭,刘丞丰,罗亦泳,邓先金,张紫怡..基于YOLOv5s改进的无人机航拍图像车辆检测模型[J].江西科学,2024,42(2):378-387,10.

基金项目

江西省自然科学基金青年资助项目(20224BAB213037) (20224BAB213037)

江西省教育厅科学技术研究项目(GJJ2200745) (GJJ2200745)

江西省哲学社会科学基地、江西省软科学培育基地联合项目(22SJDJC02) (22SJDJC02)

东华理工大学博士启动资助项目(DHBK2022001). (DHBK2022001)

江西科学

1001-3679

访问量0
|
下载量0
段落导航相关论文