| 注册
首页|期刊导航|机械科学与技术|最大相关熵准则下改进扩展卡尔曼滤波的车辆状态估计

最大相关熵准则下改进扩展卡尔曼滤波的车辆状态估计

祁登亮 冯静安 倪向东 宋宝

机械科学与技术2024,Vol.43Issue(4):573-581,9.
机械科学与技术2024,Vol.43Issue(4):573-581,9.DOI:10.13433/j.cnki.1003-8728.20220288

最大相关熵准则下改进扩展卡尔曼滤波的车辆状态估计

Vehicle State Estimation with Improved Extended Kalman Filter Under Maximum Correntropy Criterion

祁登亮 1冯静安 1倪向东 1宋宝2

作者信息

  • 1. 石河子大学 机械电气工程学院,新疆石河子 832003
  • 2. 华中科技大学 机械科学与工程学院,武汉 430074
  • 折叠

摘要

Abstract

Because of the poor robustness and accuracy of the conventional Kalman filter for vehicle state estimation in the non-Gaussian environment,an improved adaptive iterative extended Kalman filtering(AIEKF)algorithm(MC-AIEKF)under the maximum correntropy criterion(MCC)is proposed.A three-degree-of-freedom lateral-longitudinal coupled vehicle model is established,and a state observer containing the yaw rate,mass-central sideslip angle and longitudinal speed of the vehicle is designed by utilizing the easily available information on onboard sensor.The proposed algorithm is verified with the Simulink/CarSim simulation platform under the conditions of double lane change and sine sweep input.The results show that the MC-AIEKF algorithm has higher estimation accuracy and better robustness than the extended Kalman filtering(EKF)and the AIEKF in the non-Gaussian environment,being more applicable for vehicle state estimation in real situations.

关键词

自适应迭代扩展卡尔曼滤波/车辆状态估计/最大相关熵准则/非高斯环境

Key words

adaptive iterative extended Kalman filtering/vehicle state estimation/maximum correntropy criterion/non-Gaussian environment

分类

交通工程

引用本文复制引用

祁登亮,冯静安,倪向东,宋宝..最大相关熵准则下改进扩展卡尔曼滤波的车辆状态估计[J].机械科学与技术,2024,43(4):573-581,9.

基金项目

国家自然科学基金项目(61663042) (61663042)

机械科学与技术

OA北大核心CSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文