基于峰值特性判定模型更新的鲁棒视觉跟踪算法OA
Robust visual tracking algorithm based on peak characteristics to determine model updating
为解决传统的模型更新算法在视觉跟踪中出现遮挡、光照变化以及自身旋转等情况下存在的鲁棒性较差问题,提出一种利用峰值特性对模型进行选择性更新的鲁棒视觉跟踪算法.该算法首先通过粒子滤波跟踪确定目标位置,接着利用当前模型在当前帧跟踪的结果位置附近进行局部穷搜索,然后通过检测到的峰值分布确定目标置信度的数值矩阵,最后采用峰值旁瓣比阈值判断法确定是否更新当前模型.仿真结果表明:所提算法能够对目标模型进行有效更新,与对比算法比较,在应对视觉跟踪中常见的遮挡、光照变化以及自身旋转等情况时,总体上能够达到更好的跟踪效果.
In order to solve the problem that the traditional model updating algorithm has poor robustness in the case of occlusion,illumination change and self-rotation in visual tracking,this paper proposes a robust visual tracking algorithm of using peak characteristics to selectively update the model.In this algorithm,the target posi-tion is first determined through particle filtering tracking,then the current model is used to conduct a local exhaus-tive search near the result location of the current frame tracking,and the detected peak distribution is also used to determine the numerical matrix of target confidence.Finally,the peak-to-sidelobe ratio threshold judgment meth-od is employed to decide whether or not to update the current model.Simulation results show that the proposed al-gorithm can effectively update the target model,and that compared with the contrast algorithm,it can achieve a better tracking effect on the whole in dealing with the situation of usual occlusion,illumination change,self-rota-tion,etc.in visual tracking.
范舜奕;倪磊;刘斌斌;平宗伟;贾航川
94028部队,陕西咸阳 712000空军预警学院,武汉 430019
计算机与自动化
视觉跟踪粒子滤波峰值特性峰值旁瓣比置信度鲁棒优化
visual trackingparticle filterpeak characteristicspeak-to-sidelobe ratiodegree of confidencerobust optimization
《空天预警研究学报》 2024 (001)
50-56 / 7
国家自然科学基金项目(62072370);空军预警学院"厚基工程"项目
评论