| 注册
首页|期刊导航|可再生能源|基于TOPSIS-GRNN的机理-数据混合驱动光伏电站功率预测

基于TOPSIS-GRNN的机理-数据混合驱动光伏电站功率预测

柳想 陈春玲 王慧 陈浩楠

可再生能源2024,Vol.42Issue(4):471-478,8.
可再生能源2024,Vol.42Issue(4):471-478,8.

基于TOPSIS-GRNN的机理-数据混合驱动光伏电站功率预测

Power prediction of mechanism-data hybrid drive photovoltaic power plant based on TOPSIS-GRNN

柳想 1陈春玲 1王慧 1陈浩楠2

作者信息

  • 1. 沈阳农业大学 信息与电气工程学院,辽宁 沈阳 110866
  • 2. 国网辽宁电力有限公司大连供电公司,辽宁大连 116011
  • 折叠

摘要

Abstract

The article addresses the problem of relatively low accuracy of traditional PV power prediction and proposes a hybrid TOPSIS-GRNN based mechanism-data driven PV plant power prediction model.Firstly,the correlation analysis of several meteorological indicators and the output power of PV power plant is carried out,and the meteorological data with high correlation is selected as the input factor of the model.The TOPSIS algorithm was used to select the optimal similar days,and then the theoretical values of their PV plant output power and meteorological data were used to build the GRNN prediction model.Finally,the model was simulated and validated by combining the historical meteorological data and power data on the DKASC website.The final test results yielded an average power prediction accuracy of 0.8269 kW for RMSE,3.45%for MAPE and 0.019 5 kW for MAE.The prediction accuracy of this forecasting method is significantly higher than that of a single forecasting model and has some theoretical and practical value.

关键词

光伏功率预测/TOPSIS法/最佳相似日/GRNN

Key words

photovoltaic power prediction/TOPSIS/best similar day/GRNN

分类

能源科技

引用本文复制引用

柳想,陈春玲,王慧,陈浩楠..基于TOPSIS-GRNN的机理-数据混合驱动光伏电站功率预测[J].可再生能源,2024,42(4):471-478,8.

基金项目

辽宁省科学研究经费项目(LJKZ0681). (LJKZ0681)

可再生能源

OA北大核心CSTPCD

1671-5292

访问量0
|
下载量0
段落导航相关论文