| 注册
首页|期刊导航|能源工程|基于WPT-PCA-GMHMM的输气管道泄漏源特征识别研究

基于WPT-PCA-GMHMM的输气管道泄漏源特征识别研究

喻可 张宏南 金建新 曾磊 林志明 金其文 吴迎春 吴学成

能源工程2024,Vol.44Issue(2):56-66,11.
能源工程2024,Vol.44Issue(2):56-66,11.DOI:10.16189/j.nygc.2024.02.010

基于WPT-PCA-GMHMM的输气管道泄漏源特征识别研究

Research on fault source identification of gas pipeline based on WPT-PCA-GMHMM

喻可 1张宏南 2金建新 3曾磊 1林志明 4金其文 4吴迎春 1吴学成4

作者信息

  • 1. 浙江大学青山湖能源研究基地,浙江 杭州 311305
  • 2. 浙江大学宁波科创中心,浙江 宁波 315100
  • 3. 浙江浙能嘉华发电有限公司,浙江 嘉兴 314201
  • 4. 浙江大学青山湖能源研究基地,浙江 杭州 311305||浙江大学宁波科创中心,浙江 宁波 315100
  • 折叠

摘要

Abstract

In order to overcome the problem of low aperture recognition accuracy caused by large amplitude change of leakage signal of gas pipeline under pressure fluctuation,a leakage source feature recognition model based on WPT-PCA-GMMMM is proposed.The acoustic emission detection experiment of pipeline leakage under pressure fluctuation was carried out,and the wavelet packet energy spectrum of acoustic emission signal under different working conditions was extracted by wavelet packet transformation(WPT).Then the frequency band energy was decorrelated and dimensionally reduced by principal component analysis(PCA).Finally,the data and labels were divided into training set and test set,and the Gaussian mixed-hidden Markov model(GMHMM)was used to realize the classification and identification of pipeline pressure and leakage aperture.The results show that the overall accuracy of the proposed model reaches 95.20%,the accuracy of leakage aperture reaches 99.95%,and the accuracy of notable leakage identification reaches 100%,which has excellent performance compared with BPNN and SVM in the environment of both sufficient samples and small samples.

关键词

管道泄漏/声发射/小波包变换(WPT)/主成分分析(PCA)/高斯混合-隐马尔可夫模型(GMHMM)

Key words

Pipeline leakage/Acoustics emission/WPT/PCA/GMHMM

分类

能源科技

引用本文复制引用

喻可,张宏南,金建新,曾磊,林志明,金其文,吴迎春,吴学成..基于WPT-PCA-GMHMM的输气管道泄漏源特征识别研究[J].能源工程,2024,44(2):56-66,11.

基金项目

宁波市"科技创新2025"重大专项项目(2018B10024) (2018B10024)

能源工程

1004-3950

访问量0
|
下载量0
段落导航相关论文