| 注册
首页|期刊导航|四川轻化工大学学报(自然科学版)|基于混合神经网络模型的民生监督文本分类方法

基于混合神经网络模型的民生监督文本分类方法

龙华 华才健 王琦标 徐尽悦

四川轻化工大学学报(自然科学版)2024,Vol.37Issue(2):49-56,8.
四川轻化工大学学报(自然科学版)2024,Vol.37Issue(2):49-56,8.DOI:10.11863/j.suse.2024.02.07

基于混合神经网络模型的民生监督文本分类方法

Text Classification Method of Livelihood Supervision Based on Hybrid Neural Network Model

龙华 1华才健 1王琦标 1徐尽悦1

作者信息

  • 1. 四川轻化工大学计算机科学与工程学院,四川 宜宾 644000
  • 折叠

摘要

Abstract

With the gradual increase of the requirements of livelihood supervision on informationization,efficient and accurate recognition of livelihood supervision text can help the disciplinary supervision department to collect and track the events and deal with them in time.Aiming at the problem of difficult text classification for livelihood supervision,a hybrid neural network model MBC based on the Mengzi model fusing BiLSTM,attention mechanism and TextCNN is proposed to improve the accuracy of text classification for livelihood supervision.The model first uses the pre-training model Mengzi to obtain word vectors rich in semantic information,followed by the parallel BiLSTM combined with the attention mechanism network and TextCNN network to extract global and local features of the text respectively,and finally the global and local features are fused to realize the accurate text classification for livelihood supervised.The experimental results show that the MBC model achieves more than 89%in accuracy,recall and F1 value,which is better than the traditional text classification model,and provides a new research direction for the problem of text classification for livelihood supervision.

关键词

民生监督文本分类/Mengzi模型/BiLSTM/注意力机制/TextCNN/混合模型MBC

Key words

text classification for livelihood supervision/Mengzi model/BiLSTM/attention mechanism/TextCNN/hybrid model MBC

分类

信息技术与安全科学

引用本文复制引用

龙华,华才健,王琦标,徐尽悦..基于混合神经网络模型的民生监督文本分类方法[J].四川轻化工大学学报(自然科学版),2024,37(2):49-56,8.

基金项目

四川省科技计划项目(2021JDRC0011) (2021JDRC0011)

四川轻化工大学研究生创新基金项目(Y2022174) (Y2022174)

四川轻化工大学学报(自然科学版)

2096-7543

访问量0
|
下载量0
段落导航相关论文