基于YOLOv5s轻量化改进的LCD缺陷检测方法OA
Lightweight Improved LCD Defect Detection Method Based on YOLOv5s
针对目前LCD缺陷检测速度较慢、检测精度较低的现状,本文提出一种YOLOv5s轻量化改进模型来检测识别LCD所存在的缺陷情况.通过改进上采样CARAFE算子进行Nearest的替换,并修改其kencoder与kreassembly两项参数进行对比;同时,增加CBAM注意力机制,更加关注目标区域特征信息以提升模型召回率;最后进行轻量化设计替换C3为C3_Ghost,以达到参数量、运输量以及模型大小的减小.实验结果说明,改进YOLOv5s算法在原模型基础上,准确率P提高了2.1%,召回率R提高了5.4%,模型平均精度mAP达到88.8%,相对于改进前提高了2.1%,参数量和运算量分别减少了15.6%和20.9%,并且模型大小减少了14.6%.整体而言,改进后的算法模型更加轻量化,模型MB减小并且参数量以及运算量相对减少,因此方便对低算力硬件进行部署,同时也为LCD工厂智能检测技术提供一定技术参考.
In view of the current situation of the low efficiency and accuracy in the LCD detection,a lightweight improvement model of YOLOv5s has been proposed in the present paper,which is used to detect and identify the defects existing in LCD.The Nearest is replaced by improving the upsampling CARAFE operator,which is compared by modifying the two parameters of kencoder and kreassembly;at the same time,the CBAM focus mechanism is added,which can pay more attention to the target area feature information model to enhance the recall rate;finally,the C3 is replaced by C3_Ghost with lightweight design to achieve the reduction of the model size,the number of parameters and transport.The experimental results show that on the basis of the original model,the precision of YOLOv5s algorithm is improved by 2.1%,the recall rate is improved by 5.4%,the average precision of the model reaches 88.8%,which is 2.1%higher than that without improvement,and the parameter amount and calculation amount are reduced by 15.6%and 20.9%respectively.And the model size is reduced by 14.6%.Over all,the improved algorithm model is more lightweight,the model MB is reduced and the number of parameters and calculations are relatively reduced,so it is convenient for the deployment of low computing power hardware,and also provides a certain technical reference for LCD factory intelligent detection technology.
王新杰;高祥;赵云龙;唐林
四川轻化工大学自动化与信息工程学院,四川 宜宾 644000||宜宾学院三江人工智能与机器人研究院,四川 宜宾 644000四川轻化工大学机械工程学院,四川 宜宾 644000四川轻化工大学自动化与信息工程学院,四川 宜宾 644000||宜宾学院三江人工智能与机器人研究院,四川 宜宾 644000四川轻化工大学自动化与信息工程学院,四川 宜宾 644000||宜宾学院三江人工智能与机器人研究院,四川 宜宾 644000
计算机与自动化
LCD缺陷检测轻量化CARAFEGhostYOLOv5s
LCD defect detectionlightweightCARAFEGhostYOLOv5s
《四川轻化工大学学报(自然科学版)》 2024 (2)
73-83,11
四川省科技厅面上项目(19ZDYF2284)宜宾市科技计划项目(2021GY008)
评论