基于深度学习乳腺X线摄影钙化识别分类模型的临床应用价值OA
Assessing the Clinical Utility of a Deep Learning-Based Model for Calcification Recognition and Classification in Mammograms
[目的]引入基于深度学习乳腺X线摄影钙化识别及分类模型,探讨深度学习技术对钙化灶的准确识别、分类和临床应用价值.[方法]采用多中心乳腺X线检查数据,分别由高-初级诊断医生及两名初级诊断医生采用不结合及结合深度学习模型进行病灶评估,评价其诊断效能.[结果]引入深度学习模型识别钙化灶能力与高-初级诊断医生及两名初级诊断医生识别钙化灶能力相仿(漏检率分别为0.81%vs.0.65%,1.14%vs.1.63%,P>0.05),深度学习模型能够有效帮助高-初级诊断医生(灵敏度0.926,AUC0.81,P=0.014)及两名初级诊断医生(灵敏度0.896,AUC0.79,P=0.049)检出可疑恶性钙化灶,特别是在良性病变中的准确率提升作用明显.[局限]仍需更多前瞻性多中心数据验证模型稳健性,也需引入不同深度学习模型比较其临床应用价值.[结论]深度学习模型有助于乳腺X线摄影钙化识别及分类评估,有助于乳腺癌大规模筛查背景下提供辅助诊断及临床策略支持.
[Objective]This article is to assess the clinical application value of a deep learning-based model for recognizing and classifying mammography calcifications.[Methods]Multicenter mammography data were employed,with lesion assessments conducted by both senior-junior radiologists and two junior radiologists.The deep learning-based model was used in both standalone and combined approaches.Diagnostic performance was then evaluated.[Results]The introduction of the deep learning model demonstrates comparable capabilities to senior-junior radi-ologists and two junior radiologists(miss rates:0.81%vs.0.65%,1.14%vs.1.63%,P>0.05).The deep learning model effectively assists senior-junior radiologists(sensitivity 0.926,AUC 0.81,P=0.014)and two junior radiolo-gists(sensitivity 0.896,AUC 0.79,P=0.049)in detecting suspicious calcifications,especially in benign lesions.[Limitations]The study requires more prospective multicenter data and different deep learning models to com-pare their clinical utility.[Conclusions]Deep learning frameworks offer valuable support for mammography cal-cification recognition and classification,providing rapid assistance for diagnosis and clinical strategy support.
袁家琳;欧阳汝珊;戴懿;赖小慧;马捷;龚静山
暨南大学,第二临床医学院,广东深圳 518020||深圳市人民医院,放射科,广东深圳 518020中山大学第八附属医院(深圳福田),放射科,广东深圳 518033北京大学深圳医院,放射科,广东深圳 518036深圳市罗湖区人民医院,放射科,广东深圳 518000
乳腺病变乳腺X线摄影术钙化识别深度学习
breast lesionsmammographycalcification recognitiondeep learning
《数据与计算发展前沿》 2024 (002)
68-79 / 12
国家自然科学基金面上项目"面向数据不确定性的多模态医学影像分析理论和方法"(62276121);广东省医学科研基金"基于深度学习的乳腺X线摄影与自然语言处理技术对乳腺内潜在恶性病变的分层评估研究"(A2024506);深圳市科技创新委员会国际科技自主合作项目"基于多模态深度学习算法对乳腺癌筛查和诊断评估系统研究"(GJHZ20220913142613025)
评论