| 注册
首页|期刊导航|数据与计算发展前沿|基于因果约束的Transformer医学图像分割方法

基于因果约束的Transformer医学图像分割方法

郭冠辰 李军 蔡程飞 焦一平 徐军

数据与计算发展前沿2024,Vol.6Issue(2):89-100,12.
数据与计算发展前沿2024,Vol.6Issue(2):89-100,12.DOI:10.11871/jfdc.issn.2096-742X.2024.02.009

基于因果约束的Transformer医学图像分割方法

Causal Restraint Transformer for Medical Image Segmentation

郭冠辰 1李军 2蔡程飞 3焦一平 2徐军2

作者信息

  • 1. 南京信息工程大学,人工智能学院智慧医疗研究院,江苏南京 210044||南京信息工程大学,自动化学院,江苏南京 210044
  • 2. 南京信息工程大学,人工智能学院智慧医疗研究院,江苏南京 210044
  • 3. 南京信息工程大学,人工智能学院智慧医疗研究院,江苏南京 210044||南京信息工程大学,自动化学院,江苏南京 210044||泰州学院,信息工程学院,江苏泰州 225300
  • 折叠

摘要

Abstract

[Purpose]The data distribution has a significant impact on the performance of deep learning models.However,deep models may learn features irrelevant to the segmentation target,which is usually inapplicable for new datasets,resulting in insufficient generalization ability.[Methods]To alleviate this problem,this paper proposes a Transformer-based medical image segmentation method with causal restraint.Taking MCRformer as the main body of the net-work,the Morphological Constraint Stream module is used to extract morphological constraint prior information.The meshed Transformer further extracts local and network-level information.The method in-troduces a Causal Restraint module to alleviate the correlation between features related to regions of interest(ROI)and irrelative features.Representative features are selected for the model through morphological and caus-al prior information,ultimately improving segmentation performance.[Results]On the public Synapse dataset,the Dice Similarity Coefficient and Hausdorff Distance achieved mean values of 80.01%and 19.39mm,respec-tively.On the public ACDC dataset,the mean DSC reached 90.95%,outperforming other comparative methods.[Conclusions]Experiment results demonstrate that the proposed method effectively enhances multi-organ seg-mentation performance on CT and MRI images and validates the feasibility of the causal restraint module across different models.

关键词

医学图像分割/形态约束/Transformer/因果约束

Key words

medical image segmentation/morphological constraint/Transformer/causal restraint

引用本文复制引用

郭冠辰,李军,蔡程飞,焦一平,徐军..基于因果约束的Transformer医学图像分割方法[J].数据与计算发展前沿,2024,6(2):89-100,12.

基金项目

国家自然科学基金(62171230,62101365,92159301,91959207,62301263,62301265,62302228,82302291,82302352) (62171230,62101365,92159301,91959207,62301263,62301265,62302228,82302291,82302352)

数据与计算发展前沿

OACSTPCD

2096-742X

访问量0
|
下载量0
段落导航相关论文