基于因果约束的Transformer医学图像分割方法OA
Causal Restraint Transformer for Medical Image Segmentation
[目的]数据分布对深度学习模型的性能影响较大.模型学习了与分割目标无关的特征后,这些无关特征通常不适用于新的数据集,从而导致模型泛化能力不足.[方法]为缓解这一问题,本文提出基于因果约束的Transformer医学图像分割方法.以MCRformer为网络主体,利用形态约束流模块提取形态约束先验信息,网状Transformer进一步提取局部信息和网络各层次信息,并加入因果约束模块降低目标区域相关特征和无关特征之间的相关性,通过形态先验和因果先验信息为模型选出具有代表性的特征,最终提高分割性能.[结果]在公开数据集Synapse上,Dice相关系数和Hausdorff距离的均值分别达到了80.01%和19.39 mm,在公开数据集ACDC上,Dice相关系数均值达到了90.95%,优于其他对比方法.[结论]实验证明,本文提出的方法可以有效提升CT和MRI中多器官的分割性能,并验证因果约束模块在不同模型上的有效性.
[Purpose]The data distribution has a significant impact on the performance of deep learning models.However,deep models may learn features irrelevant to the segmentation target,which is usually inapplicable for new datasets,resulting in insufficient generalization ability.[Methods]To alleviate this problem,this paper proposes a Transformer-based medical image segmentation method with causal restraint.Taking MCRformer as the main body of the net-work,the Morphological Constraint Stream module is used to extract morphological constraint prior information.The meshed Transformer further extracts local and network-level information.The method in-troduces a Causal Restraint module to alleviate the correlation between features related to regions of interest(ROI)and irrelative features.Representative features are selected for the model through morphological and caus-al prior information,ultimately improving segmentation performance.[Results]On the public Synapse dataset,the Dice Similarity Coefficient and Hausdorff Distance achieved mean values of 80.01%and 19.39mm,respec-tively.On the public ACDC dataset,the mean DSC reached 90.95%,outperforming other comparative methods.[Conclusions]Experiment results demonstrate that the proposed method effectively enhances multi-organ seg-mentation performance on CT and MRI images and validates the feasibility of the causal restraint module across different models.
郭冠辰;李军;蔡程飞;焦一平;徐军
南京信息工程大学,人工智能学院智慧医疗研究院,江苏南京 210044||南京信息工程大学,自动化学院,江苏南京 210044南京信息工程大学,人工智能学院智慧医疗研究院,江苏南京 210044南京信息工程大学,人工智能学院智慧医疗研究院,江苏南京 210044||南京信息工程大学,自动化学院,江苏南京 210044||泰州学院,信息工程学院,江苏泰州 225300
医学图像分割形态约束Transformer因果约束
medical image segmentationmorphological constraintTransformercausal restraint
《数据与计算发展前沿》 2024 (002)
89-100 / 12
国家自然科学基金(62171230,62101365,92159301,91959207,62301263,62301265,62302228,82302291,82302352)
评论