|国家科技期刊平台
首页|期刊导航|水力发电|考虑上游来水影响的中长期径流预报

考虑上游来水影响的中长期径流预报OACSTPCD

Medium and Long-term Runoff Forecast Considering the Impact of Upstream Incoming Water

中文摘要英文摘要

雅砻江流域地面气象站点不足、分布不均,难以获得精确的流域面降雨资料,加之传统中长期径流预报模型泛化能力有限,中长期径流预报存在较大瓶颈.充分考虑流域水库间的物理联系,基于上下游水库流量变化在时空上的相似性,对 1957 年~2020 年锦屏一级水库和二滩水库的历史月径流数据进行主成分分析,使用 BP 人工神经网络、随机森林和支持向量回归 3 种机器学习方法建立 3 种径流预报模型,通过决定系数 R2,合格率 QR 以及平均相对误差 MRE三项指标构成的评价体系对预测结果进行评估.结果表明,上游水库对于下游水库的入库流量具有显著影响,且 3 种模型在二滩水库中长期径流预报上均具有较好的预报效果(R2>0.8、QR>0.7、MRE<0.2).随机森林模型模拟效果整体优于 BP 人工神经网络和支持向量回归模型,3 种模型均具有较好的实用性,能为流域水资源精细化调度及科学管理提供数据基础.

As the limited number and uneven distribution of surface meteorological stations in Yalong River Basin,the precise rainfall data in the basin is difficult to obtain,and coupled with the limited generalization ability of traditional medium and long-term runoff forecasting models,there is a big bottleneck in medium and long-term runoff forecasting.Considering the temporal and spatial similarity of flow variation between upstream and downstream reservoirs,the principal component analysis(PCA)is conducted on the historical monthly runoff data of Jinping I Reservoir and Ertan Reservoir from 1957 to 2020,and three runoff prediction models are established by using three machine learning methods of BP artificial neural network,random forest and support vector regression,respectively.The prediction results of three runoff prediction models are evaluated by three indicators of coefficient of determination(R2),pass rate(QR),and mean relative error(MRE).The results show that the upstream reservoir has a significant influence on the inflow of the downstream reservoir,and all the three models exhibit excellent prediction performance in the medium and long-term runoff prediction of Ertan Reservoir(R2 greater than 0.8,QR greater than 0.7 and MRE less than 0.2).In general,the random forest model demonstrates superior simulation performance to BP artificial neural network and support vector regression model,and all the three models have good practicability,which can provide a data basis for the refined allocation and scientific management of river basin water resources.

李世林;黄炜斌;陈枭;周开喜;钟璐;曾宏

四川大学水利水电学院, 四川 成都 610065镇雄县水务局, 云南 昭通 657200国家电网公司西南分部, 四川 成都 610041

水利科学

径流预报中长期主成分分析BP人工神经网络随机森林支持向量回归二滩水库

runoff forecastmedium and long-termprincipal component analysisBP artificial neural networkrandom forestsupport vector regressionErtan Reservoir

《水力发电》 2024 (005)

16-20,121 / 6

国家重点研发计划(2018YFB0905204);四川省科技计划(2022YFG0292)

评论