| 注册
首页|期刊导航|石油化工|基于图对比学习网络的碳捕集利用与封存过程临界物性预测

基于图对比学习网络的碳捕集利用与封存过程临界物性预测

蔡一涵 崔乐雨 李欣 苏智青 何秀娟 李应成

石油化工2024,Vol.53Issue(4):518-524,7.
石油化工2024,Vol.53Issue(4):518-524,7.DOI:10.3969/j.issn.1000-8144.2024.04.006

基于图对比学习网络的碳捕集利用与封存过程临界物性预测

Prediction of critical physical properties in carbon capture,utilization and storage based on graph contrastive learning

蔡一涵 1崔乐雨 2李欣 1苏智青 2何秀娟 2李应成2

作者信息

  • 1. 中石化(上海)石油化工研究院有限公司,上海 201208||绿色化工与工业催化全国重点实验室,上海 201208
  • 2. 中石化(上海)石油化工研究院有限公司,上海 201208
  • 折叠

摘要

Abstract

In response to the high cost of traditional experimental and computational methods for obtaining the critical temperature(Tc)of compounds,the graph comparative learning(GCL)algorithm was applied to predict the Tc of crude oil components.The differences between the GCL algorithm and traditional computational models were compared by combining the existing Tc dataset with supplementary related data of crude oil components.The calculation results indicate that the GCL method can capture the characteristics of nodes and edges in the graph,while requiring less training data,making it suitable for predicting the properties of molecules.The GCL method shows higher prediction accuracy,and the encoding method of adjusting the 2D and 3D of molecular can improve the predictive performance of GCL.

关键词

分子性质预测/图对比学习/碳捕集利用与封存/CO2驱油

Key words

molecular property prediction/graph contrastive learning/carbon capture,utilization and storage/carbon dioxide flooding

分类

化学化工

引用本文复制引用

蔡一涵,崔乐雨,李欣,苏智青,何秀娟,李应成..基于图对比学习网络的碳捕集利用与封存过程临界物性预测[J].石油化工,2024,53(4):518-524,7.

基金项目

中国石化集团公司重点研发项目(KL22055). (KL22055)

石油化工

OA北大核心CSTPCD

1000-8144

访问量0
|
下载量0
段落导航相关论文