| 注册
首页|期刊导航|市政技术|基于机器学习的城市地下空间需求量预测研究

基于机器学习的城市地下空间需求量预测研究

汤志立 王雪 徐千军

市政技术2024,Vol.42Issue(4):38-44,7.
市政技术2024,Vol.42Issue(4):38-44,7.DOI:10.19922/j.1009-7767.2024.04.038

基于机器学习的城市地下空间需求量预测研究

Prediction of Urban Underground Space Demand by Machine Learning

汤志立 1王雪 2徐千军3

作者信息

  • 1. 北京信息基础设施建设股份有限公司,北京 100068||北京市基础设施投资有限公司,北京 100101
  • 2. 北京市政路桥科技发展有限公司,北京 100037
  • 3. 清华大学水沙科学与水利水电工程国家重点实验室,北京 100084
  • 折叠

摘要

Abstract

Accurate prediction of urban underground space demand is an important work for urban underground space planning.In view of the shortcomings of the current research,such as less consideration,qualitative focus,strong subjectivity and low prediction accuracy,based on 43 groups of urban underground space related data in the litera-ture,a multi factor urban underground space demand prediction model was established based on 9 kinds of machine learning algorithm for the first time in this paper.In the process of establishing the model,the characteristic data was normalization processed to eliminate the effect of feature dimension on the model performance.The feature was extracted to select the optimal feature combination.The grid search cross validation technology was used to optimize the model parameters.Finally,the root mean square error and the determination coefficient were used to evaluate the model performance.The calculation results show that the three most 3 important influencing factors of urban un-derground space demand are resident population density,regional average car ownership and regional average GDP,which the mean value of characteristic importance in different algorithm models is 0.342,0.187 and 0.172 respectively;The feature combination of F-l(that is all eight features used)is the optimal feature combination.At this time,the XGB algorithm model has the highest performance with a determination coefficient of 0.970 and a root mean square error of 460.2;Finally,the BAG algorithm model predicts the development intensity of underground facilities in Beijing in 2020 with the prediction error of 9.23%,which further reflects the high accuracy of the model.

关键词

机器学习/城市地下空间/需求量/预测

Key words

machine learning/urban underground space/demand/prediction

分类

土木建筑

引用本文复制引用

汤志立,王雪,徐千军..基于机器学习的城市地下空间需求量预测研究[J].市政技术,2024,42(4):38-44,7.

基金项目

国家自然科学基金项目(52090084) (52090084)

市政技术

1009-7767

访问量0
|
下载量0
段落导航相关论文