图像灰度处理对路面裂缝病害检测影响分析OA
Influence of Image Gray Process on the Detection of Pavement Cracks
以路面纵向裂缝、横向裂缝和龟裂等典型路面裂缝病害作为研究对象,采用YOLOv7算法进行路面裂缝类型自动识别.研究过程中对图像数据集进行了灰度化处理,得到了彩色图像集和灰度图像集,针对上述2种裂缝图像集分析了如迭代次数、置信度和交并比阈值等算法参数对目标检测精度及性能的影响,提出了彩色图像集和灰度图像集的最优参数组合.以实测路面裂缝图像作为输入,分别采用基于彩色图像集和灰度图像集的检测算法最优参数组合进行路面裂缝识别,分析了图像灰度处理对路面裂缝检测精度的影响.研究结果表明,算法参数对裂缝检测性能的影响均呈现先增大后减小的趋势,彩色图像集包含更为丰富的路面特征信息,基于彩色图像集算法模型的路面裂缝病害类型识别精度和效率更高.研究成果为路面裂缝病害自动检测精度的提高提供了参考.
The longitudinal crack,transverse crack and alligator crack was considered as research objectives,the crack automatic detection was performed by YOLOv7 algorithm in this study.The image dataset was conducted by grey operation to obtain the colorful image set and the grey image set.In terms to the above two image sets,the in-fluence of algorithm parameters of the iteration time,confidence threshold and the intersection to union ratio threshold(IOU)on the accuracy and performance was analyzed to propose the optimal parameter combinations.The field measured images were utilized as input for the detection model.Based on the color image set and the gray image set,the pavement crack was detected.The influence of the image grey operation on the detection accuracy was stud-ied.The result indicates that all the effects of parameters on the prediction accuracy showed an obvious increase and followed by a decrease trend.The color image could capture more sufficient information of the pavement characteris-tics compared with gray image.The crack disease identification based on color image set achieved greater accuracy and more efficient performance.The research can provide an inference for the accuracy improvement of pavement crack automatic detection.
王国忠;陈明星;姚辉;曹丹丹
山西省交通建设工程质量检测中心(有限公司),山西太原 030032北京工业大学城市建设学部,北京 100124
交通运输
道路工程沥青路面裂缝病害检测精度图像灰度处理
road engineeringasphalt pavementcrack diseasedetection accuracyimage grey process
《市政技术》 2024 (004)
考虑应力依赖性的沥青混合料力学性能快速反演及路面性能衰减研究
270-277 / 8
国家自然科学基金项目(52008012);山西交控集团科研项目(20-JKKJ-31)
评论