| 注册
首页|期刊导航|西安工程大学学报|基于EPSA-YOLOv5电力高空作业安全带佩戴检测

基于EPSA-YOLOv5电力高空作业安全带佩戴检测

李永福 陈立斌 惠君伟 袁润枞 柴浩凯

西安工程大学学报2024,Vol.38Issue(2):18-25,8.
西安工程大学学报2024,Vol.38Issue(2):18-25,8.DOI:10.13338/j.issn.1674-649x.2024.02.003

基于EPSA-YOLOv5电力高空作业安全带佩戴检测

Safety belt wearing detection for electric aloft work based on EPSA-YOLOv5

李永福 1陈立斌 1惠君伟 1袁润枞 1柴浩凯2

作者信息

  • 1. 国网陕西电力有限公司建设分公司,陕西西安 710075
  • 2. 西安理工大学电气工程学院,陕西西安 710048
  • 折叠

摘要

Abstract

To address the problem of missed detection and slow detection speed in safety belt wearing test for electric aloft work,this paper proposed a method for detecting the wearing of safety belts based on EPSA-YOLOv5 algorithm.This method was based on EPSANet backbone feature extraction network,which reduced the number of parameters in the network while main-taining good feature extraction performance,and speeding up the model recognition speed.By im-proving the spatial pyramid pooling structure,the model detection accuracy was improved;on this basis,an improved algorithm based on Soft-NMS was proposed to reduce the detection of targets.Experimental results show that the detection accuracy and speed of safety belt for aloft work based on EPSA-YOLOv5 network model are 2.34%higher than that of the original YOLOv5 model,which has practicality and efficiency.

关键词

安全带检测/YOLOv5模型/EPSANet/Soft-NMS/金字塔池化结构

Key words

safety belt detection/YOLOv5 model/EPSANet/Soft-NMS/pyramid pooling struc-ture

分类

信息技术与安全科学

引用本文复制引用

李永福,陈立斌,惠君伟,袁润枞,柴浩凯..基于EPSA-YOLOv5电力高空作业安全带佩戴检测[J].西安工程大学学报,2024,38(2):18-25,8.

基金项目

国家自然科学基金(52177193) (52177193)

陕西省重点研发计划(2022GY-182) (2022GY-182)

西安市科技计划项目(22GXFW0078) (22GXFW0078)

西安工程大学学报

OACSTPCD

1674-649X

访问量0
|
下载量0
段落导航相关论文