| 注册
首页|期刊导航|现代电子技术|基于RFB和超网络的跨尺度多层次真实失真图像质量评价方法

基于RFB和超网络的跨尺度多层次真实失真图像质量评价方法

周怀博 贾惠珍 王同罕

现代电子技术2024,Vol.47Issue(9):47-52,6.
现代电子技术2024,Vol.47Issue(9):47-52,6.DOI:10.16652/j.issn.1004-373x.2024.09.009

基于RFB和超网络的跨尺度多层次真实失真图像质量评价方法

Multi-scale and multi-level authentic distorted image quality assessment based on RFB and hyper networks

周怀博 1贾惠珍 1王同罕1

作者信息

  • 1. 东华理工大学 信息工程学院,江西 南昌 330013||东华理工大学 江西省放射性地学大数据技术工程实验室,江西 南昌 330013
  • 折叠

摘要

Abstract

An innovative dual-branch feature extraction method is proposed to achieve efficient cross-scale learning in the domain of authentic distorted image quality assessment.The method undergoes a two-phase training process.In the first phase,cross-scale and cross-color-space image content perception feature is extracted by a self-supervised contrast learning approach.In the second phase,a strategy based on dilated receptive fields and hypernetworks is employed to establish a cyclic feature fusion,which circularly interacts and integrates multi-level feature information with cross-scale information to obtain image quality features closer to human perception.On the basis of the validation on the publicly available authentic distorted image databases,the experimental results demonstrate that the proposed algorithm has achieved superior performance in the quality assessment of authentic distorted images.The experimental results show that the proposed algorithm can realize more efficient cross-scale learning,which provides a good foundation for the application of multi-scale deep network of image processing.

关键词

图像质量评价/无参考/真实失真/跨尺度学习/多特征融合/双分支特征提取

Key words

image quality assessment/no-reference/authentic distortion/cross-scale learning/multi-feature fusion/double branch feature extraction

分类

电子信息工程

引用本文复制引用

周怀博,贾惠珍,王同罕..基于RFB和超网络的跨尺度多层次真实失真图像质量评价方法[J].现代电子技术,2024,47(9):47-52,6.

基金项目

国家自然科学基金项目(62266001) (62266001)

国家自然科学基金项目(62261001) (62261001)

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文