|国家科技期刊平台
首页|期刊导航|现代电子技术|KoiU-Net:基于多特征增强融合的纺锤形鱼类图像分割方法

KoiU-Net:基于多特征增强融合的纺锤形鱼类图像分割方法OA北大核心CSTPCD

KoiU-Net:A fusiform fish image segmentation method based on multi-feature enhancement fusion

中文摘要英文摘要

针对纺锤形鱼类图像分割任务中存在的边缘不清、特征模糊等问题,提出一种基于多特征增强融合的纺锤形鱼类图像分割网络KoiU-Net.该网络在经典的U-Net模型基础上,设计了多尺度特征交叉感知模块和多尺度特征融合模块来增强对纺锤形鱼类特征的处理能力,以应对纺锤形鱼类图像分割中存在的边缘模糊、特征复杂的问题.同时,设计了多尺度上采样模块以提取更精细的特征信息.在纺锤形鱼类图像数据集上的实验表明,相较于原始U-Net等其他分割网络,KoiU-Net取得了平均98.63%的分割精度的显著提升.各设计模块的有效性也通过消融实验得以验证,尤其是多尺度特征交叉感知模块对提升分割性能具有关键作用.该研究为进一步实现纺锤形鱼类生长状态监测提供了有效的技术支撑,为该领域的进一步发展奠定了基础.

In view of the blurred edges and vague features in the fusiform fish image segmentation task,a multi-feature enhancement and fusion based fusiform fish image segmentation network KoiU-Net is proposed.On the basis of the classical U-Net model,a multi-scale feature cross perception module and a multi-scale feature fusion module are designed to enhance the processing capability of fusiform fish features,so as to cope with the problems of blurred edges and complex features in the segmentation of fusiform fish image.The multi-scale upsampling module is designed to extract finer feature information.Experiments on the fusiform fish image dataset show that the KoiU-Net achieves significant improvement in segmentation accuracy,averaging 98.63%,in comparison with the other segmentation networks such as the original U-Net.The effectiveness of each design module is also verified by ablation experiments,and the multi-scale feature cross perception module plays a key role in improving the segmentation performance.This study provides effective technical support for further implementation of fusiform fish growth state monitoring and lays the foundation for the further development in this field.

朱珈缘;孟娟;杜海;马媛媛;曹静雯

大连海洋大学 信息工程学院,辽宁 大连 116023大连理工大学 海岸和近海工程国家重点实验室,辽宁 大连 116024

电子信息工程

深度学习图像分割分割精度纺锤形鱼U-Net多尺度特征融合

deep learningimage segmentationsegmentation accuracyfusiform fishU-Netmulti-scale feature fusion

《现代电子技术》 2024 (009)

53-58 / 6

10.16652/j.issn.1004-373x.2024.09.010

评论