首页|期刊导航|现代科学仪器|基于注意力机制的电力负荷预测方法研究

基于注意力机制的电力负荷预测方法研究OACSTPCD

Research on Power Load Forecasting Method Based on Attention Mechanism

中文摘要英文摘要

研究基于注意力机制的电力负荷预测方法,分析电网运作规律,保障电网可靠运作.建立电力负荷数据预测模型,将历史电力负荷数据作为输入层的输入数据,通过双卷积层、双池化层结构的卷积神经网络降低输入数据维度,提取电力负荷数据特征向量,采用GRU层学习所提取的特征向量,获取电力负荷数据的变化规律,以此为依据,采用注意力机制为电力负荷数据分配不同权重,保障电力数据预测模型获取序列内长距离依赖特征的便利性,并通过输出层输出电力数据预测结果,完成电力数据高效分析.实验结果表明:该方法可提升电力数据特征自相关性,并通过为电力负荷数据分配合理注意力机制权重,有效选择电力负荷数据;可通过电力数据分析实现多个变电站的电力负荷数据准确预测.

Research on power load forecasting methods based on attention mechanism,analyze the operation rules of the power grid,and ensure the reliable operation of the power grid.Establish the power load data prediction model,take the historical power load data as the input data of the input layer,reduce the dimension of the input data through the convolution neural network with double convolution layer and double pooling layer structure,extract the feature vector of the power load data,use the GRU layer to learn the extracted feature vector,and obtain the change rule of the power load data,based on which,use the attention mechanism to assign different weights to the power load data,ensure the convenience of the power data prediction model to obtain the long-distance dependence features in the sequence,and output the power data prediction results through the output layer to complete the efficient analysis of power data.The experimental results show that this method can improve the autocorrelation of power data characteristics,and effectively select power load data by assigning reasonable attention mechanism weights to power load data;Accurate prediction of power load data of multiple substations can be realized through power data analysis.

皮一晨;王纪军;吴鹏;周昊程

国网南京供电公司,江苏南京 210000江苏电力信息技术有限公司,江苏南京 210000江苏电力信息技术有限公司,江苏南京 210000江苏电力信息技术有限公司,江苏南京 210000

计算机与自动化

注意力机制卷积神经网络GRU网络电力数据电力负荷预测

Attention mechanismConvolution neural networkGRU networkPower dataPower load forecasting

《现代科学仪器》 2024 (2)

153-158,6

评论