| 注册
首页|期刊导航|现代科学仪器|基于注意力机制的电力负荷预测方法研究

基于注意力机制的电力负荷预测方法研究

皮一晨 王纪军 吴鹏 周昊程

现代科学仪器2024,Vol.41Issue(2):153-158,6.
现代科学仪器2024,Vol.41Issue(2):153-158,6.

基于注意力机制的电力负荷预测方法研究

Research on Power Load Forecasting Method Based on Attention Mechanism

皮一晨 1王纪军 2吴鹏 2周昊程2

作者信息

  • 1. 国网南京供电公司,江苏南京 210000
  • 2. 江苏电力信息技术有限公司,江苏南京 210000
  • 折叠

摘要

Abstract

Research on power load forecasting methods based on attention mechanism,analyze the operation rules of the power grid,and ensure the reliable operation of the power grid.Establish the power load data prediction model,take the historical power load data as the input data of the input layer,reduce the dimension of the input data through the convolution neural network with double convolution layer and double pooling layer structure,extract the feature vector of the power load data,use the GRU layer to learn the extracted feature vector,and obtain the change rule of the power load data,based on which,use the attention mechanism to assign different weights to the power load data,ensure the convenience of the power data prediction model to obtain the long-distance dependence features in the sequence,and output the power data prediction results through the output layer to complete the efficient analysis of power data.The experimental results show that this method can improve the autocorrelation of power data characteristics,and effectively select power load data by assigning reasonable attention mechanism weights to power load data;Accurate prediction of power load data of multiple substations can be realized through power data analysis.

关键词

注意力机制/卷积神经网络/GRU网络/电力数据/电力负荷预测

Key words

Attention mechanism/Convolution neural network/GRU network/Power data/Power load forecasting

分类

信息技术与安全科学

引用本文复制引用

皮一晨,王纪军,吴鹏,周昊程..基于注意力机制的电力负荷预测方法研究[J].现代科学仪器,2024,41(2):153-158,6.

现代科学仪器

1003-8892

访问量0
|
下载量0
段落导航相关论文