开放同行评审中自动评审分类方法研究OA北大核心CHSSCDCSSCICSTPCD
Research on Automatic Review Classification Methods in Open Peer Review
[目的/意义]科技论文是学术界传递和交流知识的重要方式.科技论文评审是对科技论文承载的知识的价值衡量,高效准确的科技论文评审分类预测可以快速判断论文价值,加速有价值的知识传播进程.[方法/过程]本文讨论开放同行评审中自动评审分类方法,利用科技论文语义信息和开放同行评审中的专家评分,分别构建基于传统机器学习和基于深度学习的科技论文文本表示及分类模型,提供自动评审分类结果.[结果/结论]实验结果表明,融合语义信息和评分信息的评审分类模型比单纯依靠评分均值进行评审判断更为有效,以评分+均值为评分信息输入、基于SCIBERT的质量评审分类模型准确率最高,达到 90.17%.本文提出的自动评审分类方法具有可用性,准确率较高,可以辅助期刊编辑快速筛选有潜力的科技论文,促进科技论文智能评审的发展.
[Purpose/Significance]Scientific papers play a crucial role in the transmission and exchange of knowledge within academia.The evaluation of scientific paper reviews serves as an indicator of the knowledge value contained in these papers.Efficient and accurate prediction of scientific paper review classifications can enable swift assessment of their worth,thereby expediting the dissemination process for valuable knowledge.[Method/Process]This study delved into an automat-ic review classification method within open peer review systems.By harnessing semantic information extracted from scientific papers and expert ratings obtained during open peer reviews,the study constructed text representations and classification models.Traditional machine-learning approaches and deep-learning techniques were employed to generate automatic review classification results.[Result/Conclusion]Experimental findings demonstrate that integrating semantic information with rating data led to more effective review classification models compared to relying solely on mean ratings for judgment purpo-ses.Among the various models tested,the quality review classification model based on SCIBERT with the input of rating+mean achieved the highest accuracy at 90.17%.The proposed automatic review classification method demonstrated usability and high accuracy,offering valuable assistance to journal editors in swiftly screening potential scientific papers and contrib-uting to intelligent advancements in the field of scientific paper reviewing.
陈红玉;胡文俊;路永和
中山大学信息管理学院, 广东 广州 510006中山大学人工智能学院, 广东 珠海 519082
文本语义开放同行评审自动评审分类深度学习
text semanticsopen peer reviewautomatic review classificationdeep learning
《现代情报》 2024 (005)
95-106 / 12
广东省重点领域研发计划项目"基于大数据智能的多层次知识检索关键技术研究及应用"(项目编号:2021B0101420004).
评论