| 注册
首页|期刊导航|现代信息科技|基于CNN与迁移学习实现肺部影像分类识别

基于CNN与迁移学习实现肺部影像分类识别

刘艺峰 罗亮

现代信息科技2024,Vol.8Issue(7):86-90,5.
现代信息科技2024,Vol.8Issue(7):86-90,5.DOI:10.19850/j.cnki.2096-4706.2024.07.019

基于CNN与迁移学习实现肺部影像分类识别

Classification and Recognition of Lung Image Based on CNN and Transfer Learning

刘艺峰 1罗亮1

作者信息

  • 1. 湖南工商大学,湖南 长沙 410205
  • 折叠

摘要

Abstract

This paper presents an innovative research on intelligent classification and recognition of lung images based on Deep Learning methods,and proposes a method based on Convolutional Neural Networks(CNN)and Transfer Learning,which uses classic CNN models such as VGG,InceptionV3 and ResNet as pre-trained models,and selects different Transfer Learning strategies according to the size and similarity of the datasets.This paper also uses techniques such as data augmentation,batch normalization and regularization to improve the generalization ability and stability of the model.We conduct experiments on two public lung image datasets of COVID-19 CT scans and LIDC-IDRI.The experimental results demonstrate the effectiveness and robustness of the proposed method,which can help improve the diagnostic efficiency and accuracy.

关键词

卷积神经网络/迁移学习/肺部疾病

Key words

Convolutional Neural Networks/Transfer Learning/lung disease

分类

信息技术与安全科学

引用本文复制引用

刘艺峰,罗亮..基于CNN与迁移学习实现肺部影像分类识别[J].现代信息科技,2024,8(7):86-90,5.

基金项目

全国大学生创业训练计划目(202210554001X) (202210554001X)

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文