|国家科技期刊平台
首页|期刊导航|现代信息科技|基于CNN与迁移学习实现肺部影像分类识别

基于CNN与迁移学习实现肺部影像分类识别OA

Classification and Recognition of Lung Image Based on CNN and Transfer Learning

中文摘要英文摘要

基于深度学习方法对肺部影像的智能分类识别做了创新性研究,提出了一种基于卷积神经网络和迁移学习的方法,选用了VGG、InceptionV3 和ResNet等经典CNN模型作为预训练模型,根据数据集的大小和相似性,选择了不同的迁移学习策略,文章还使用了数据增强、批量归一化和正则化等技术,提高了模型的泛化能力和稳定性.在COVID-19 CT scans、LIDC-IDRI两个公开的肺部影像数据集上进行了实验,实验结果证明了其有效性和鲁棒性,有助于提高诊断效率和准确度.

This paper presents an innovative research on intelligent classification and recognition of lung images based on Deep Learning methods,and proposes a method based on Convolutional Neural Networks(CNN)and Transfer Learning,which uses classic CNN models such as VGG,InceptionV3 and ResNet as pre-trained models,and selects different Transfer Learning strategies according to the size and similarity of the datasets.This paper also uses techniques such as data augmentation,batch normalization and regularization to improve the generalization ability and stability of the model.We conduct experiments on two public lung image datasets of COVID-19 CT scans and LIDC-IDRI.The experimental results demonstrate the effectiveness and robustness of the proposed method,which can help improve the diagnostic efficiency and accuracy.

刘艺峰;罗亮

湖南工商大学,湖南 长沙 410205

计算机与自动化

卷积神经网络迁移学习肺部疾病

Convolutional Neural NetworksTransfer Learninglung disease

《现代信息科技》 2024 (007)

86-90 / 5

全国大学生创业训练计划目(202210554001X)

10.19850/j.cnki.2096-4706.2024.07.019

评论