| 注册
首页|期刊导航|现代信息科技|基于双流融合网络的恶意软件动态行为检测

基于双流融合网络的恶意软件动态行为检测

王玉胜 毛子恒

现代信息科技2024,Vol.8Issue(8):177-181,185,6.
现代信息科技2024,Vol.8Issue(8):177-181,185,6.DOI:10.19850/j.cnki.2096-4706.2024.08.038

基于双流融合网络的恶意软件动态行为检测

Dynamic Behavior Detection for Malware Based on Dual-stream Converged Networks

王玉胜 1毛子恒1

作者信息

  • 1. 辽宁工业大学电子与信息工程学院,辽宁 锦州 121001
  • 折叠

摘要

Abstract

To address the problem that traditional static analysis methods are difficult to capture the complex and changeable dynamic behavior of malware,the experiment is based on dynamic feature analysis techniques,through studying the WindowsAPI call sequences of eight common malware,it is found that the before-and-after order of API call sequences and the call frequency will directly reflect the malicious behavior of malware.The experiment uses TF-IDF(Term Frequency-Inverse Document Frequency)technique to vectorize the API call sequences,and designs a Deep Learning model based on CNN-BiLSTM dual-stream converged network to model the before-and-after dependency relationship of such API calls and realize the dynamic detection of common malware.The experimental results indicate that the test accuracy of this model reaches 95.99%,which is better than RF,SVM,LSTM,BiLSTM and CNN-LSTM models,and provides reference for malware detection.

关键词

API调用序列/动态检测/深度学习/特征表示

Key words

API call sequence/dynamic detection/Deep Learning/feature representation

分类

计算机与自动化

引用本文复制引用

王玉胜,毛子恒..基于双流融合网络的恶意软件动态行为检测[J].现代信息科技,2024,8(8):177-181,185,6.

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文