RIS辅助的通感性能联合优化研究OA
Research on Reconfigurable Intelligent Surface-assisted Joint Optimization of Communication and Sensing Performances
通感一体化是6G的主要场景之一.为了解决因障碍物遮挡等导致的非视距下传输的区域通信和感知性能下降问题,提出了一种智能超表面辅助的通感性能联合优化方法.首先,建模了最小化均方位置误差和最大化平均覆盖信号强度的区域性能联合优化问题,并提出了改进的DBO算法,快速获得RIS的部署位置和相位参数.进一步,分析探测需求因子和RIS大小对区域通感性能的影响.仿真结果显示,相较于仅优化期望反射角,联合优化RIS的期望波束反射角和部署位置可以使区域平均均方位置误差降低80%左右,改进的DBO算法相较于传统的优化算法如PSO、SSA以及原DBO算法拥有更快的收敛速度和更低的适应度.
Integrated sensing and communication(ISAC)is one of the major 6G scenarios.In order to solve the problem of reduced performances of communication and sensing in an area under non-line-of-sight transmission due to obstacles,a joint optimization approach is proposed for the reconfigurable intelligent surface(RIS)-assisted ISAC performance.Firstly,the area performance joint optimization problem is formulated to minimize squared position error bound(SPEB)and maximize the average coverage signal strength.Then an improved dung beetle optimizer(DBO)algorithm is proposed to quickly obtain the deployment position and phase parameters of RISs.Furthermore,the impacts of detection demand factor and RIS size on the area ISAC performance are analyzed.The simulation results show that compared with merely optimizing desired angle of reflection of RIS,jointly optimizing its deployment location and the desired angle of reflection can reduce the regional average SPEB by about 80%.Meanwhile,the improved DBO algorithm has a faster convergence speed and a better fitness compared with traditional optimization algorithms such as particle swarm optimization,sparrow search algorithm and the original DBO algorithm.
庄宏成;卢浩宇;谢杰铭;钭奕煊
中山大学电子与通信工程学院,广东 深圳 518107
电子信息工程
智能超表面通感一体化6G粒子群优化算法麻雀搜索算法蜣螂优化算法
reconfigurable intelligent surfaceintegrated sensing and communication6Gparticle swarm optimizationsparrow search algorithmdung beetle optimizer
《移动通信》 2024 (004)
27-34 / 8
国家重点研发计划"具有开放扩展架构的模块化移动终端技术"(2021YFA0716600)
评论