非光滑半无限多目标优化的高阶KKT最优性充分条件OA北大核心CSTPCD
Higher-Order KKT Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization
考虑了一类非光滑半无限多目标优化问题.利用高阶Studniarski下导数,得到了问题的严格局部有效解的高阶弱KKT最优性充分条件.进一步地,若假设该最优性条件中目标函数相关的乘子均大于零,则得到严格局部Borwein真有效解的高阶强KKT充分条件.这些充分条件适用于处理无任何凸性假设下的问题.
The nonsmooth semi-infinite multiobjective optimization problems were investigated.The higher-or-der weak KKT sufficient optimality conditions for strictly local efficient solutions were established in terms of higher-order lower Studniarski derivatives.Furthermore,under the assumption that all multipliers associated with objective functions are positive in optimality conditions,the higher-order strong KKT sufficient optimality conditions for strictly local Borwein-properly efficient solutions would be achieved.These sufficient optimality conditions were established without any convexity assumptions.
曹琪;冯敏
重庆交通大学 数学与统计学院,重庆 400074
数学
半无限多目标优化高阶Studniarski下导数高阶KKT充分条件
semi-infinite multiobjective optimizationhigher-order lower Studniarski derivativehigher-order KKT sufficient condition
《应用数学和力学》 2024 (004)
502-508 / 7
国家自然科学基金(12201085);重庆市自然科学基金(CSTB2023NSCQ-MSX0332)
评论