基于改进YOLOv8的电力场景通用缺陷检测模型OACSTPCD
A general defect detection model for power scenarios using the improved YOLOv8
现行的集中式缺陷检测系统存在数据量大、检测实时性低等问题,亟需以边缘计算为代表的分布式检测系统.为此,基于单阶段、轻量化的检测模型YOLOv8设计多种模块算法以提升其在电力场景下的检测精度.首先改进Mosaic数据增强算法,引入冲突关系表规避了传统数据增强算法对原始图像数据信息的破坏,增强了图像数据的多样性.然后,使用Res2Net模块代替原有的Bottleneck模块,增强模型对多尺度感知能力的同时也保持了检测模型的轻量化.使用CIoU-NMS算法替代原有的NMS(非极大值抑制)算法,提升了检测模型在聚类去重阶段的召回率与精度.最后,在14个电力场景缺陷上进行实验,均获得了比原有模型更好的检测精度,同时模型在电力场景的缺陷检测速度上亦有提升.
The current centralized defect detection system faces challenges such as large data volume and poor real-time performance,underscoring the pressing need for distributed detection systems,with edge computing as a repre-sentative.In response,diverse module algorithms are devised based on the single-stage,lightweight detection model YOLOv8 to boost its accuracy in power scenarios.Firstly,the Mosaic data augmentation algorithm is improved,and a conflict relationship table is introduced to mitigate the damage to original image data information caused by tradi-tional data augmentation algorithms and enhance the diversity of image data.Subsequently,the Res2Net module is employed to replace the original Bottleneck module,reinforcing the model's multiscale perception while retaining its lightweight design.The adoption of the CIoU-NMS algorithm over the existing NMS(non-maximum suppression)algorithm improves the recall rate and precision of the detection model in the clustering and deduplication stage.Fi-nally,experiments on fourteen defects in power scenarios consistently demonstrate the proposed model's superior detection accuracy compared to the original model,accompanied by an accelerated detection speed in defect detec-tion power scenarios.
韩睿;戴哲仁;蒋鹏;李晨;姜雄伟
国网浙江省电力有限公司电力科学研究院,杭州 310014国网浙江省电力有限公司,杭州 310007
深度学习缺陷检测数据增强非极大值抑制YOLOv8
deep learningdefect detectiondata augmentationNMSYOLOv8
《浙江电力》 2024 (004)
113-120 / 8
国网浙江省电力有限公司科技项目(5211DS220003)
评论