浙江大学学报(理学版)2024,Vol.51Issue(3):273-276,4.DOI:10.3785/j.issn.1008-9497.2024.03.003
一类三阶两点边值问题解的存在性
Existence of solutions for a class of third-order two-point boundary value problems
摘要
Abstract
In this paper,we consider the boundary value problems of third-order nonlinear ordinary differential equation{u'''(t)= f(t,u(t),u'(t),u''(t)),a.e.0<t<1,u(0)= u'(0)= u'(1)=0,where f:[0,1]×R3→R satisfies Carathéodory conditions.Under some suitable growth conditions on f,we show that the above problem has at least one solution.The proof of the main results is based on Leray-Schauder fixed point theorem.关键词
三阶常微分方程/边值问题/Leray-Schauder不动点定理/存在性Key words
third-order ordinary differential equation/boundary value problem/Leray-Schauder fixed point theorem/existence分类
数学引用本文复制引用
王丽媛,马如云..一类三阶两点边值问题解的存在性[J].浙江大学学报(理学版),2024,51(3):273-276,4.基金项目
国家自然科学基金资助项目(12061064). (12061064)