| 注册
首页|期刊导航|发电技术|一种二模态天气分型方法及其在光伏功率概率预测的应用

一种二模态天气分型方法及其在光伏功率概率预测的应用

付小标 李德鑫 侯嘉琪 李宝聚 温亚坤 赖晓文 郭雷 王志伟 王尧 张海锋

发电技术2024,Vol.45Issue(2):299-311,13.
发电技术2024,Vol.45Issue(2):299-311,13.DOI:10.12096/j.2096-4528.pgt.23017

一种二模态天气分型方法及其在光伏功率概率预测的应用

A Two-Modal Weather Classification Method and Its Application in Photovoltaic Power Probability Prediction

付小标 1李德鑫 2侯嘉琪 3李宝聚 1温亚坤 3赖晓文 4郭雷 1王志伟 1王尧 1张海锋2

作者信息

  • 1. 国网吉林省电力有限公司电力调度控制中心,吉林省 长春市 130021
  • 2. 国网吉林省电力有限公司电力科学研究院,吉林省 长春市 130021
  • 3. 北京清能互联科技有限公司创新中心,北京市 海淀区 100084
  • 4. 清华四川能源互联网研究院交易与运筹研究所,四川省 成都市 610299
  • 折叠

摘要

Abstract

Weather classification is an indispensable preprocessing step in photovoltaic power prediction.A new photovoltaic power clustering based two-modal weather classification method was proposed to finely depict the uncertainty of photovoltaic power.Both photovoltaic power data and meteorological data were considered for weather classification,which provided a novel and effective path for weather classification based photovoltaic power prediction.In addition,data fusion technology was used to mine relevant information between numeric weather prediction(NWP)data and measured meteorological data to help for weather classification,so as to reduce the model reliance on the accuracy of forecasted meteorological indicators as well as improve the robustness of the model.In experiments based on the data of a photovoltaic power station in Jilin,the rationality of the weather classification method was demonstrated.The photovoltaic power probability prediction combined with the proposed weather classifier resulted in the prediction interval coverage probability closer to the preassigned confidence level,and a narrower mean prediction interval width.

关键词

光伏发电/天气分型/光伏功率概率预测/时间序列K均值聚类/多模态学习/不确定性

Key words

photovoltaic power generation/weather classification/photovoltaic power probability prediction/time series K-means clustering/multi-modal learning/uncertainty

分类

能源科技

引用本文复制引用

付小标,李德鑫,侯嘉琪,李宝聚,温亚坤,赖晓文,郭雷,王志伟,王尧,张海锋..一种二模态天气分型方法及其在光伏功率概率预测的应用[J].发电技术,2024,45(2):299-311,13.

基金项目

国网吉林省电力有限公司揭榜挂帅项目(2021JBGS-09). Project Supported by Science and Technology Project Selected by the Open Competition Mechanism of State Grid Jilinsheng Electric Power Supply Company(2021JBGS-09). (2021JBGS-09)

发电技术

OACSTPCD

2096-4528

访问量0
|
下载量0
段落导航相关论文