| 注册
首页|期刊导航|发电技术|一种改进组合神经网络的超短期风速预测方法研究

一种改进组合神经网络的超短期风速预测方法研究

邵宜祥 刘剑 胡丽萍 过亮 方渊 李睿

发电技术2024,Vol.45Issue(2):323-330,8.
发电技术2024,Vol.45Issue(2):323-330,8.DOI:10.12096/j.2096-4528.pgt.22038

一种改进组合神经网络的超短期风速预测方法研究

Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks

邵宜祥 1刘剑 1胡丽萍 1过亮 1方渊 1李睿1

作者信息

  • 1. 南瑞集团有限公司,江苏省 南京市 211106
  • 折叠

摘要

Abstract

Ultra-short-term wind speed prediction is the key to ensure the implementation effect of wind turbine pitch angle feedforward control,and has an important impact on improving the environmental adaptability of wind turbines.In order to improve the prediction accuracy,an ultra-short-term wind speed prediction method based on an improved combined neural networks was proposed.In this method,BP neural network and long short-term memory(LSTM)neural network,which are suitable for time series prediction and have strong nonlinear learning ability,are selected for weighted combination to eliminate the large error that may exist in a single neural network.At the same time,to improve the combination effect,the differential evolution(DE)algorithm was used to optimize the combination weight.The method was applied to the ultra-short-term wind speed prediction of a wind farm.Compared with the results of single neural network prediction and equal weight combined neural networks prediction,the effectiveness of the proposed method in improving the prediction accuracy was verified.

关键词

风力发电/超短期风速预测/BP神经网络/长短期记忆(LSTM)神经网络/差分进化(DE)算法

Key words

wind power/ultra-short-term wind speed prediction/BP neural network/long short-term memory(LSTM)neural network/differential evolution(DE)algorithm

分类

能源科技

引用本文复制引用

邵宜祥,刘剑,胡丽萍,过亮,方渊,李睿..一种改进组合神经网络的超短期风速预测方法研究[J].发电技术,2024,45(2):323-330,8.

基金项目

国家电网公司科技项目(524608140152). Project Supported by Science and Technology Project of SGCC(524608140152). (524608140152)

发电技术

OACSTPCD

2096-4528

访问量0
|
下载量0
段落导航相关论文