| 注册
首页|期刊导航|电子学报|基于改进SSD的合成孔径声纳图像感兴趣小目标检测方法

基于改进SSD的合成孔径声纳图像感兴趣小目标检测方法

李宝奇 黄海宁 刘纪元 刘正君 韦琳哲

电子学报2024,Vol.52Issue(3):762-771,10.
电子学报2024,Vol.52Issue(3):762-771,10.DOI:10.12263/DZXB.20220925

基于改进SSD的合成孔径声纳图像感兴趣小目标检测方法

Interested Small Target Detection Method Based on Improved SSD for Synthetic Aperture Sonar Image

李宝奇 1黄海宁 2刘纪元 1刘正君 1韦琳哲2

作者信息

  • 1. 中国科学院声学研究所,北京 100190||中国科学院先进水下信息技术重点实验室,北京 100190
  • 2. 中国科学院声学研究所,北京 100190||中国科学院先进水下信息技术重点实验室,北京 100190||中国科学院大学,北京 100049
  • 折叠

摘要

Abstract

The efficient object detection model SSD-MV3(Single Shot Detection-MobileNet V3)cannot directly de-tect the interested small targets in high-resolution SAS(Synthetic Aperture Sonar)images due to the input image size limit.To this end,this paper proposes a novel object detection method,HRSSD(High Resolution Single Shot Detection),which ensures the specification of SSD-MV3 input image size and the integrity of the interested small targets through redundant cutting algorithm,and guarantees the unique detection result by using secondary non-maximum suppression.Furthermore,an improved feature block with a combination of scale,space and channel attention mechanism is proposed,and the basic network and additional feature network of SSD-MV3 are redesigned as SSD-MV3P(Single Shot Detection-MobileNet V3 Pro).Thus,SSD-MV3P can more effectively perceive the feature information of interested small targets.The experimental results show that the mAP(mean Average Precision)of SSD-MV3P is 4.39%higher than that of SSD-MV3 on the interest-ed small target detection dataset SST(Sonar Small Target).HRSSD realizes the detection of the interested small targets in high-resolution SAS images,and ensures the integrity and uniqueness of the detection result at the same location.

关键词

合成孔径声纳/感兴趣小目标检测/轻量化目标检测模型/注意力机制/二次非极大值抑制

Key words

synthetic aperture sonar/interested small target detection/efficient object detection model/attention mechanism/secondary non maximum suppression

分类

信息技术与安全科学

引用本文复制引用

李宝奇,黄海宁,刘纪元,刘正君,韦琳哲..基于改进SSD的合成孔径声纳图像感兴趣小目标检测方法[J].电子学报,2024,52(3):762-771,10.

基金项目

国家自然科学基金(No.11904386) National Natural Science Foundation of China(No.11904386) (No.11904386)

电子学报

OA北大核心CSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文