改进UNet++的遥感影像森林变化检测方法OA北大核心CSTPCD
Improved forest change detection method for remote sensing imagery using UNet++
针对森林覆盖变化检测任务,现有的基于深度学习模型存在结构复杂且忽视光谱与空间协同关系的问题,导致检测效果并不理想.为了解决这个问题,本研究提出一种结合多尺度空间解耦卷积(MSDConv)和空-谱特征协同策略(SSFC)的改进UNet++轻量级森林覆盖变化检测方法.首先,基于UNet++网络构建一个非权重共享伪孪生网络,增加少量参数便能实现更好的特征提取,采用MSDConv模块捕捉变化对象的多尺度特征,减少信息冗余和参数计算;其次,在MSDConv中引入SSFC,获取空间和谱间的三维注意力权重且不增加额外参数,使得MSDConv获取更丰富的边缘和细节特征;最后,使用 6 种植被指数增强森林覆盖变化特征.结果表明,本研究提出的模型森林覆盖变化检测精度、召回率和 F1 分数分别为 93.12%,93.62%和 93.37%,模型参数量和计算量分别为 6.28 MB 和 11.25 GB.与原始Sami-UNet++方法对比,本研究提出的模型准确率、召回率和F1 分数仅分别下降1.41%、1.66%和1.53%,但参数量与计算量分别降低 5.76 MB和 16.19 GB.本研究提出的模型显著提高了森林覆盖变化检测任务的检测效率,对于需要处理大量图像数据的森林覆盖变化检测任务具有重要的意义,可为森林灾害的评估以及森林资源的保护提供技术手段.
Current deep learning-based models used to detect changes in forest cover suffer from two major issues:complex structure and neglect of the spectral and spatial synergistic relationship.These limitations often result in unsatisfactory detection results.To address these challenges,we propose an improved UNet++lightweight forest cover change detection method that combines multi-scale spatial decoupling convolution(MSDConv)and a spatial-spectral feature cooperation strategy(SSFC).Using this method,a non-weight sharing pseudo-twin network was initially constructed based on the UNet++network,which allows for better feature extraction while adding only a small number of parameters.The MSDConv module was adopted to capture the multi-scale features of the changing objects,thereby reducing information redundancy and parameter computation.Subsequently,SSFC was introduced into the MSDConv module to obtain three-dimensional attentional weights between spatial and spectral networks without adding extra parameters.This enables MSDConv to produce richer edge and detail features.Having assembled this framework,six vegetation indices were used to enhance the forest cover change features.Using the proposed model,we obtained values of 93.12%,93.62%,and 93.37%for the accuracy,recall,and F1-score,respectively.Additionally,the number of parameters and computational volume of the model were found to be 6.28 MB and 11.25 GB,respectively.Compared with the original Sami-UNet++method,our proposed model exhibited only slight decreases in accuracy,recall,and F1-score,with values lower by only 1.41%,1.66%,and 1.53%,respectively.However,the number of parameters and computational volume is significantly declined by 5.76 MB and 16.19 GB,respectively.The application of our model offers a significant improvement in the efficiency of detecting changes in forest cover.This advancement proves invaluable when dealing with large amounts of image data,and provides a technical means for the assessment of forest hazards,as well as the protection of forest resources.
马永军;张艺;王广来;黄建平
东北林业大学计算机与控制工程学院,黑龙江 哈尔滨 150040东北林业大学机电工程学院,黑龙江 哈尔滨 150040
计算机与自动化
森林覆盖变化检测遥感影像深度学习轻量化UNet++
forest coverchange detectionremote-sensing imagedeep learninglightweight UNet++
《森林与环境学报》 2024 (003)
317-327 / 11
黑龙江省自然科学基金项目"基于深度学习的森林灾害监测预警关键技术研究"(TD2020C001).
评论