|国家科技期刊平台
首页|期刊导航|电子科技|融合注意力和胶囊池化的轻量型胶囊网络

融合注意力和胶囊池化的轻量型胶囊网络OA

Lightweight Capsule Network Fusing Attention and Capsule Pooling

中文摘要英文摘要

针对胶囊网络特征信息传播低效性和路由过程存在较大计算开销等问题,文中提出了一种融合注意力和胶囊池化的轻量型胶囊网络.该网络主要有以下两方面的优势:1)提出了胶囊注意力.将注意力作用于初级胶囊层,增强对重要胶囊的关注,提高低级胶囊对高级胶囊预测的准确性;2)提出新的胶囊池化.在初级胶囊层所有特征图的对应位置筛选出权重最大的胶囊,在减少模型参数量的同时以少量的重要胶囊表示有效特征信息.公共数据集的结果表明,提出的胶囊网络在CIFAR10 上达到92.60%的精度,并在复杂数据集上具有良好的白盒对抗攻击鲁棒性.此外,提出的胶囊网络在AffNIST数据集上达到95.74%的精度,具有较好的仿射变换鲁棒性.计算效率结果表明,所提网络的浮点运算量比传统胶囊网络减少了31.3%,参数量减少了41.9%.

In view of the inefficiency of feature information propagation in capsule networks and the huge com-putational overhead in the routing process,a graph pooling capsule network that combines attention and capsule poo-ling is proposed.The network mainly has the following two advantages:1)The capsule attention is proposed,and the attention is applied to the primary capsule layer,which enhances the attention to the important capsules,and im-proves the accuracy of the prediction of the lower capsules to the higher capsules;2)A new capsule pooling is pro-posed.The capsule with the largest weight is screened out at the corresponding positions of all feature maps in the primary capsule layer,and the effective feature information is represented by a small number of important capsules while reducing the number of model parameters.Results on public data sets show that the proposed capsule network achieves the accuracy of 92.60%on CIFAR10 and has excellent robustness against white-box adversarial attacks on complex datasets.In addition,the proposed capsule network achieves 95.74%accuracy on the AffNIST data set with superior affine transformation robustness.The calculation efficiency results show that the amount of floating-point operations of the proposed capsule is reduced by 31.3%and the number of parameters is reduced by 41.9%when compared with traditional CapsNet.

朱子豪;宋燕

上海理工大学 光电信息与计算机工程学院,上海 200093

计算机与自动化

深度学习图像分类胶囊网络胶囊池化注意力机制鲁棒性对抗攻击轻量型

deep learningimage classificationcapsule networkcapsule poolingattention mechanismro-bustnessadversarial attacklightweight

《电子科技》 2024 (005)

1-8,31 / 9

国家自然科学基金(62073223);上海市自然科学基金(22ZR1443400);航天飞行动力学技术国防科技重点实验室开放课题(6142210200304) National Natural Science Foundation of China(62073223);Shang-hai Natural Science Foundation(22ZR1443400);Open Project of the National Defense Science and Technology Key Laboratory of Aer-ospace Flight Dynamics(6142210200304)

10.16180/j.cnki.issn1007-7820.2024.05.001

评论