| 注册
首页|期刊导航|计算机工程与应用|面向高维多目标优化的双阶段双种群进化算法

面向高维多目标优化的双阶段双种群进化算法

曹嘉乐 杨磊 田井林 李华德 李康顺

计算机工程与应用2024,Vol.60Issue(9):159-171,13.
计算机工程与应用2024,Vol.60Issue(9):159-171,13.DOI:10.3778/j.issn.1002-8331.2307-0381

面向高维多目标优化的双阶段双种群进化算法

Dual-Stage Dual-Population Evolutionary Algorithm for Many-Objective Optimization

曹嘉乐 1杨磊 1田井林 1李华德 1李康顺1

作者信息

  • 1. 华南农业大学 数学与信息学院,广州 510642
  • 折叠

摘要

Abstract

As the number of objectives increases,the Pareto front of many-objective optimization problem becomes increas-ingly complex.Traditional decomposition-based many-objective evolutionary algorithms struggle to select populations with both good diversity and convergence characteristics.To address this issue,a novel dual-stage dual-population evolu-tionary algorithm for many-objective optimization is proposed.In this algorithm,the evolutionary process is divided into two stages.In the first stage,it determines whether the shape of the Pareto front is regular.In the second stage,it adjusts the weight vectors based on the shape of the Pareto front,ensuring that the population can achieve good diversity on both regular and irregular Pareto fronts.To perform weight vector adjustments without affecting the convergence of the algo-rithm,two populations are used for evolution:one main population evolves normally,and the other auxiliary population serves as the weight vectors.Finally,to obtain a set of weight vectors that adapt well to populations distributed on irregular Pareto fronts,the concept of energy balance in nature is introduced to collect a well-diverse auxiliary population as weight vectors.The proposed algorithm is compared with other algorithms on test problems with 3-10 objectives.Experimental results demonstrate that the proposed algorithm outperforms the compared algorithms on the majority of the test problems.

关键词

高维多目标优化/进化算法/双阶段/双种群/权重向量/能量平衡

Key words

many-objective optimization/evolutionary algorithm/dual-stage/dual-population/weight vector/energy balance

分类

信息技术与安全科学

引用本文复制引用

曹嘉乐,杨磊,田井林,李华德,李康顺..面向高维多目标优化的双阶段双种群进化算法[J].计算机工程与应用,2024,60(9):159-171,13.

基金项目

国家自然科学基金(61573157) (61573157)

广东省自然科学基金(2020A1515010691) (2020A1515010691)

广州市农业科技特派员项目(20212100036). (20212100036)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文