| 注册
首页|期刊导航|控制理论与应用|频域多方向C-UNet及动态损失的工业烟尘图像分割

频域多方向C-UNet及动态损失的工业烟尘图像分割

张大锦 刘辉 陈甫刚 赵安

控制理论与应用2024,Vol.41Issue(3):543-554,12.
控制理论与应用2024,Vol.41Issue(3):543-554,12.DOI:10.7641/CTA.2023.20987

频域多方向C-UNet及动态损失的工业烟尘图像分割

Industrial smoke image segmentation based on frequency domain multi-directional C-UNet and dynamic loss

张大锦 1刘辉 1陈甫刚 2赵安1

作者信息

  • 1. 昆明理工大学信息工程与自动化学院,云南昆明 650500||昆明理工大学云南省人工智能重点实验室,云南昆明 650500
  • 2. 云南昆钢电子信息科技有限公司,云南昆明 650302
  • 折叠

摘要

Abstract

The accurate segmentation of the smoke in industrial smoke pollution level monitoring is an important pre-requisite for pollution level determination.The typical challenges in feature extraction of smoke include blurred edges,difficult extraction of edge directional detail information and inaccurate segmentation.In this study,a frequency domain multi-directional C-UNet(Contourlet U-Net)and dynamic loss industrial smoke image segmentation method is proposed,aiming to provide support to overcome these problems.Firstly,the contourlet multi-directional decomposition down-sampling structure is constructed to enhance the ability to extract edge direction information of smoke in the encoding stage.Secondly,the contourlet transform is used to extract detailed information on the eight edge directions of smoke for skip connections,improving the accuracy of detail information expression during continuous sampling.Then,the con-tourlet detail reconstruction up-sampling structure is constructed to enhance the recovery ability of edge detail information of smoke in the decoding stage.Finally,a dynamic weighting strategy is proposed to construct a combined loss function to optimize the training network and enhance the network's ability to extract smoke edge features.The results show that compared with U-Net and other similar methods,the proposed method has a better improvement in indicators,improves the accuracy of smoke edge segmentation,and the segmentation effect on different smoke scenes is better than the existing segmentation model.

关键词

工业烟尘/图像分割/轮廓波变换/特征提取/动态损失函数

Key words

industrial smoke/image segmentation/contourlet transform/feature extraction/dynamic loss function

引用本文复制引用

张大锦,刘辉,陈甫刚,赵安..频域多方向C-UNet及动态损失的工业烟尘图像分割[J].控制理论与应用,2024,41(3):543-554,12.

基金项目

国家自然科学基金项目(62263016,61863018),云南省科技厅应用基础研究项目(202001AT070038)资助.Supported by the National Natural Science Foundation of China(62263016,61863018)and the Applied Basic Research Programs of Yunnan Science and Technology Department(202001AT070038). (62263016,61863018)

控制理论与应用

OA北大核心CSTPCD

1000-8152

访问量0
|
下载量0
段落导航相关论文