银杏雄花序光谱特征时序变化分析及氮含量估测OA北大核心CSTPCD
Temporal evolution analysis of spectral characteristics in male ginkgo inflorescences and estimation of nitrogen content
[目的]氮素是影响银杏生长发育的关键元素,且银杏雄花作为银杏活跃的生理器官,雄花序中氮素含量对其受精生理和衰老生理产生直接影响.然而,前人的研究多集中于果树等园艺作物叶片氮含量的光谱估测,利用光谱技术监测银杏雄花氮素含量的研究仍较少.因此,本文拟构建银杏雄花序氮含量的最佳估测模型,实现银杏雄花序氮素含量动态变化的快速无损监测.[方法]研究以不同时期的银杏雄花花序为研究对象,定量分析银杏雄花花序不同时期的氮素含量动态变化;使用便携式地物光谱仪同步获取雄花花序高光谱反射率,并提取氮素相关的光谱指数;结合相关性分析和全子集回归算法(All-subsets Regression,ASR)优选目标光谱指数;在此基础上,分别基于多元线性回归(Multiple Linear Regression,MLR)和随机森林回归(Random Forest Regression,RFR)进行建模,并使用赤池信息准则(AIC)对多元线性回归模型的拟合度进行判定;最后,使用留一交叉验证法进行模型的精度检验.[结果]银杏雄花序氮素含量随着时间的变化呈现逐渐下降的趋势;在众多光谱指数当中,基于相关性分析和全子集回归算法优选出对银杏雄花序氮含量敏感的光谱指数NI_Ferwerda、MCARI/OSAVI、TCARI(调整R2=0.73);基于优选的3款光谱参数构建的多元线性回归模型(CV-R2=0.70)的表现总体优于随机森林回归模型(CV-R2=0.63).[结论]基于优选光谱指数构建的多元线性回归模型的估测效果较好,能较为准确地估测银杏雄花序氮素含量,进而为银杏雄花序的氮素营养状况监测提供了理论依据和必要的技术支撑.
[Objective]Nitrogen is a key element that significantly impacts the growth and development of ginkgo trees.As a dynamically active physiological organ,the nitrogen content in male inflorescences of ginkgo trees has a direct impact on its fertilization and senescence processes.However,previous research has primarily focused on the spectral estimation of nitrogen content in leaves of horticultural crops like fruit trees.Few studies have utilized spectral techniques to monitor the nitrogen content of ginkgo male inflorescences.Therefore,the objective of this study is to establish an optimal estimation model for nitrogen content in ginkgo male inflorescences,thus enabling rapid and non-invasive monitoring of nitrogen content fluctuations.[Method]This study focused on the male inflorescences of ginkgo trees,quantitatively analyzing the dynamic changes of nitrogen content in the inflorescences over time.A portable spectrometer was used to simultaneously acquire high-resolution spectral reflectance of the inflorescences,and nitrogen-related spectral indices were extracted.Through correlation analysis and the All-subsets Regression(ASR)algorithm,target spectral indices were selected.Subsequently,models were developed based on Multiple Linear Regression(MLR)and Random Forest Regression(RFR),and the Akaike Information Criterion(AIC)was employed to assess the fit of the MLR model.Finally,the accuracy of the models was tested using leave-one-out cross-validation.[Result]The results indicate that the nitrogen content in ginkgo male inflorescences exhibited a gradual decreasing trend over time.Among numerous spectral indices,sensitivity analysis and the All-subsets Regression algorithm identified the spectral indices NI_Ferwerda,MCARI/OSAVI,and TCARI as being particularly sensitive to nitrogen content in ginkgo male inflorescences(adjusted R2=0.73).The performance of the Multiple Linear Regression model based on these selected spectral parameters(CV-R2=0.70)generally outperformed the Random Forest Regression model(CV-R2=0.63).[Conclusion]The Multiple Linear Regression model constructed based on the selected spectral indices demonstrated a favorable estimation performance,accurately predicting the nitrogen content in ginkgo male inflorescences.Furthermore,this study offers theoretical and technical supports for the effective monitoring of nitrogen nutrition in the male inflorescences of ginkgo trees.
裘赛铤;朱玉婷;周凯
南京林业大学 南方现代林业协同创新中心,江苏 南京 210037浙江农林大学 林业与生物技术学院,浙江 杭州 311300
林学
银杏氮含量光谱特征时序光谱特征
Ginkgonitrogen contentspectral characteristicstime-series spectral characteristics
《江西农业大学学报》 2024 (002)
367-378 / 12
国家自然科学基金项目(32101521) Project supported by the National Natural Science Foundation of China(32101521)
评论