|国家科技期刊平台
首页|期刊导航|工矿自动化|基于图像分析的掘进工作面粉尘颗粒检测方法

基于图像分析的掘进工作面粉尘颗粒检测方法OA北大核心CSTPCD

A method for detecting dust particles in excavation working face based on image analysis

中文摘要英文摘要

基于光散射原理测定粉尘质量浓度只能定时定点手动检测,实时性差,且只能检测出粉尘质量浓度,并不能给出粒径分布范围.目前基于图像分析的粉尘颗粒检测研究主要是针对粉尘质量浓度或粒径分布进行单方面研究,并不能实现粉尘质量浓度和粒径分布范围的同时检测.针对上述问题,提出了一种基于图像分析的掘进工作面粉尘颗粒检测方法,探究图像特征与粉尘质量浓度、粒径分布间的关系.通过粉尘样本收集及图像采集装置,采集粉尘颗粒图像并获取采集图像时的粉尘质量浓度.编写粉尘样本图像处理算法,提取图像的灰度特征、纹理特征、几何特征相关参数.对提取的图像特征与实测粉尘质量浓度进行相关性分析,选取相关性较大的图像特征作为参数建立回归数学模型.提取粉尘颗粒对象像素点个数,结合转换系数,基于几何当量等效面积径计算粉尘粒径大小及分布范围.实验结果表明:实测粉尘质量浓度与建立的图像特征多元非线性回归模型数学模型计算值间的平均相对误差为 12.37%,标准实测粒径与几何当量等效面积径得到的粒径分布间的最大相对误差为8.63%,平均相对误差为 6.37%,验证了基于图像特征的粉尘质量浓度回归数学模型和基于几何当量等效面积径分布数学模型的准确性.

Based on the principle of light scattering,measuring dust concentration can only be done manually at fixed times and locations,with poor real-time performance.It can only detect dust mass concentration and cannot provide a range of particle size distribution.At present,research on dust particle detection based on image analysis mainly focuses on unilateral research on dust mass concentration or particle size distribution.It cannot achieve simultaneous detection of dust mass concentration and particle size distribution range.In order to solve the above problems,a method for detecting dust particles in excavation working face based on image analysis is proposed.It explores the relationship between image features and dust mass concentration and particle size distribution.By using a dust sample collection and image acquisition device,dust particle images are collected and the dust mass concentration at the time of image acquisition is obtained.An image processing algorithm for dust samples,is developed to extract parameters related to grayscale features,texture features,and geometric features of the image.The correlation analysis between the extracted image features and the measured dust mass concentration is performed,and the image features with high correlation is selected as parameters to establish a regression mathematical model.The method extracts the number of pixels in the dust particle object.Combining with the conversion coefficient,the method calculates the size and distribution range of the dust particle based on the geometric equivalent area diameter.The experimental results show that the average relative error between the measured dust mass concentration and the calculated values of the established image feature multiple nonlinear regression model mathematical model is 12.37%.The maximum relative error between the standard measured particle size and the geometric equivalent area size obtained from the particle size distribution is 8.63%,and the average relative error is 6.37%.This verifies the accuracy of the image feature based dust mass concentration regression mathematical model and the geometric equivalent area diameter distribution mathematical model.

龚晓燕;冯浩;付浩然;陈龙;常虎强;刘壮壮;贺子纶;裴晓泽;薛河

西安科技大学 机械工程学院,陕西 西安 710054陕煤集团神木柠条塔矿业有限公司,陕西 神木 719300

矿山工程

掘进工作面粉尘质量浓度粉尘粒径分布范围图像分析几何当量等效面积径皮尔逊相关系数

excavation working facedust mass concentrationdust particle size distribution rangeimage analysisgeometric equivalent equivalent area diameterPearson correlation coefficient

《工矿自动化》 2024 (004)

55-62,77 / 9

国家自然科学基金面上资助项目(52374226);陕西省自然科学基础研究计划-企业-陕煤联合基金资助项目(2021JLM-01).

10.13272/j.issn.1671-251x.2023100074

评论