| 注册
首页|期刊导航|曲阜师范大学学报(自然科学版)|一类具有饱和型发病率的双时滞利什曼病模型的全局稳定性分析

一类具有饱和型发病率的双时滞利什曼病模型的全局稳定性分析

杨雨琴 杨文生

曲阜师范大学学报(自然科学版)2024,Vol.50Issue(2):83-92,10.
曲阜师范大学学报(自然科学版)2024,Vol.50Issue(2):83-92,10.DOI:10.3969/j.issn.1001-5337.2024.2.083

一类具有饱和型发病率的双时滞利什曼病模型的全局稳定性分析

Global stability analysis of a double delay Leishmaniasis model with saturated incidence rate

杨雨琴 1杨文生1

作者信息

  • 1. 福建师范大学数学与统计学院,350117,福建省福州市
  • 折叠

摘要

Abstract

Leishmaniasis,also known as kala-azar,is transmitted by the bite of infected sandflies.The two most common clinical manifestations of the disease are visceral Leishmaniasis and cutaneous Leish-maniasis.In order to effectively control the spread of the disease,a double delay Leishmaniasis model with saturated incidence rate is proposed.First,this paper analyzes the existence of equilibrium points and determines the basic regeneration number.Then,by constructing an appropriate Lyapunov function and using the LaSalle invariance principle,the global stability of the equilibrium point of the system is studied.Finally,this study verifies the feasibility of the results through numerical simulation and gives the corre-sponding conclusion.

关键词

利什曼病/饱和型发病率/双时滞/李雅普诺夫函数/全局稳定性

Key words

Leishmaniasis/saturated incidence rate/double delay/Lyapunov function/global stability

分类

数理科学

引用本文复制引用

杨雨琴,杨文生..一类具有饱和型发病率的双时滞利什曼病模型的全局稳定性分析[J].曲阜师范大学学报(自然科学版),2024,50(2):83-92,10.

基金项目

国家自然科学基金(11672074) (11672074)

福建省自然科学基金(2022J01192). (2022J01192)

曲阜师范大学学报(自然科学版)

1001-5337

访问量0
|
下载量0
段落导航相关论文