| 注册
首页|期刊导航|控制理论与应用|集成数据挖掘知识的可解释最优超球体支持向量机

集成数据挖掘知识的可解释最优超球体支持向量机

陆思洁 范頔 渐令 郜传厚

控制理论与应用2024,Vol.41Issue(3):375-384,10.
控制理论与应用2024,Vol.41Issue(3):375-384,10.DOI:10.7641/CTA.2023.20832

集成数据挖掘知识的可解释最优超球体支持向量机

Interpretable small sphere and large margin support vector machine with integrated data mining knowledge

陆思洁 1范頔 1渐令 2郜传厚1

作者信息

  • 1. 浙江大学数学科学学院,浙江杭州 310027
  • 2. 中国石油大学(华东)经济管理学院,山东青岛 266580
  • 折叠

摘要

Abstract

Small sphere and large margin support vector machine(SSLM)is a typical black box model,which works in no need of understanding the internal structure and mechanism of the object to be studied while only utilizes the input and output data for the purpose of knowing its function and interaction relation.Hence,the SSLM has the advantages of fast response and strong real-time performance,but accordingly lacks interpretability and transparency.In view of this,this paper examines ways to add prior knowledge into the input-port of the SSLM black box model to enhance its interpretability.We developed a nonlinear circular knowledge mining algorithm based on data as well as a discretization algorithm for knowledge,and the discrete data points contain not only the original data points that generated the knowledge,but also add new data points.By integrating the mined circular knowledge into the SSLM model in the form of inequality constraints,we construct an interpretable SSLM model(i-SSLM).When the model is trained,it is necessary to ensure that the data point classification of the knowledge constraint is correct,so there is a certain degree of prediction of the model results,indicating that the model is interpretable.At the same time,due to the discretization of knowledge to add new data information,the model can have higher accuracy.The validity of the i-SSLM model was verified on 10 sets of common sample sets and 2 sets of actual blast furnace datasets.

关键词

黑箱模型/可解释性/最优超球体支持向量机/先验知识/不平衡数据

Key words

black box model/interpretability/small sphere and large margin support vector machine/prior knowledge/unbalanced data

引用本文复制引用

陆思洁,范頔,渐令,郜传厚..集成数据挖掘知识的可解释最优超球体支持向量机[J].控制理论与应用,2024,41(3):375-384,10.

基金项目

国家自然科学基金项目(12320101001,12071428,62111530247),浙江省自然科学基金重点项目(LZ20A010002)资助.Supported by the National Natural Science Foundation of China(12320101001,12071428,62111530247)and the National Natural Science Founda-tion of Zhejiang Province(LZ20A010002). (12320101001,12071428,62111530247)

控制理论与应用

OA北大核心CSTPCD

1000-8152

访问量0
|
下载量0
段落导航相关论文