|国家科技期刊平台
首页|期刊导航|现代电子技术|用户用电负荷变化的异常检测与识别

用户用电负荷变化的异常检测与识别OA北大核心CSTPCD

Abnormal detection and identification of changes in user electricity load

中文摘要英文摘要

在智能电网时代,大部分用电异常行为都会伴随用电负荷的变化,研究用户用电行为对于电力系统的运行和管理都至关重要.为此,提出一种直接利用负荷数据进行计算,通过计算特征用电负荷曲线与日用电负荷曲线之间的相关度来判断用户是否存在异常用电行为的方法.在相关度计算过程中,将欧氏距离与皮尔逊相关系数相结合,以更准确地判断用户的用电负荷是否发生重大变化.此外,为提高判断的准确性和灵活性,采用自适应阈值策略对500组数据进行实验研究.相关度计算的结果表明,其中122组被判断为负荷变化过大,99组数据存在负荷异常事件,该方法的判断准确率达到了81.1%.

In the era of smart grids,most abnormal electricity consumption behaviors will be accompanied by the changes in electricity load.The research on user electricity consumption behavior is crucial for the operation and management of the power system.On this basis,a method of directly using load data for calculation is proposed to determine whether users have abnormal electricity consumption behavior,which can be realized by the correlation between the characteristic electricity consumption load curve and the daily electricity consumption load curve.In the process of correlation calculation,the Euclidean distance is combined with the Pearson correlation coefficient to more accurately determine whether the user's electricity load has undergone significant changes.An adaptive threshold strategy is adopted for the experimental research on 500 sets of data to improve the accuracy and flexibility of judgment.The correlation calculation results show that 122 groups'data have excessive load changes,and 99 groups'data have abnormal load events.The accuracy of this method can reach 81.1%.

李晗轲;李璟;王颖;邹国平;陈倩楠;蔡慧

中国计量大学 机电工程学院,浙江 杭州 310018

电子信息工程

异常用电行为负荷检测日用电负荷曲线特征负荷曲线相关度皮尔逊相关系数欧氏距离阈值判断

abnormal electricity consumption behaviorload detectiondaily electricity load curvecharacteristic load curvecorrelationPearson correlation coefficientEuclidean distancethreshold judgment

《现代电子技术》 2024 (010)

1-5 / 5

国家自然科学基金项目(52377017)

10.16652/j.issn.1004-373x.2024.10.001

评论