|国家科技期刊平台
首页|期刊导航|统计与决策|两维异质性面板分位数模型的双惩罚回归方法

两维异质性面板分位数模型的双惩罚回归方法OA北大核心CHSSCDCSSCICSTPCD

Double Penalty Regression Method for Two-dimensional Heterogeneous Panel Quantile Model

中文摘要英文摘要

文章关注系数具有两维异质性结构的面板分位数模型,基于SCAD惩罚函数和MCP惩罚函数提出双惩罚最小加权绝对偏差目标函数,同时进行参数估计和两维异质性结构识别.利用ADMM算法求解目标函数,并使用BIC信息准则通过网格搜索选择最优调节参数.根据蒙特卡洛模拟结果验证了所提方法的有限样本性质,最后使用实际数据检验了其应用效果.研究结果表明:所提出的方法能够准确识别两维异质性结构,并且Post估计量的参数估计精确度接近于Oracle估计量.

This paper focuses on the panel quantile model with two-dimensional heterogeneity structure of coefficients,and based on SCAD penalty function and MCP penalty function,proposes a double penalty minimum weighted absolute deviation ob-jective function,and at the same time carries out parameter estimation and two-dimensional heterogeneity structure identification.Then,ADMM algorithm is used to solve the objective function,and BIC information criterion used to select the optimal adjustment parameters through grid search.Finally,based on Monte Carlo simulation results,the finite sample properties of the proposed method are verified,and the practical data are also used to verify the application effect.The results show that the proposed method can accurately identify the two-dimensional heterogeneous structure,and that the accuracy of parameter estimation of Post estima-tor is close to that of Oracle estimator.

任燕燕;李东霖;王文悦

山东大学 经济学院,济南 250100

数学

两维异质性面板数据分位数回归双惩罚

two-dimensional heterogeneitypanel dataquantile regressiondouble penalty

《统计与决策》 2024 (008)

5-10 / 6

国家社会科学基金资助项目(21BTJ046);山东省自然科学基金资助项目(ZR2020MG035);山东大学人文社科重大项目(22RWZD16)

10.13546/j.cnki.tjyjc.2024.08.001

评论