| 注册
首页|期刊导航|统计与决策|基于M估计强混合重尾序列结构变点的鲁棒检验

基于M估计强混合重尾序列结构变点的鲁棒检验

朱玲 金浩 乔宝明

统计与决策2024,Vol.40Issue(8):34-40,7.
统计与决策2024,Vol.40Issue(8):34-40,7.DOI:10.13546/j.cnki.tjyjc.2024.08.006

基于M估计强混合重尾序列结构变点的鲁棒检验

Robustness Test of M-Estimation-based Change Points of Strongly Mixed Heavy Tail Sequence Structures

朱玲 1金浩 2乔宝明3

作者信息

  • 1. 西安科技大学理学院,西安 710054||重庆移通学院 公共大数据安全技术重庆市重点实验室,重庆 401420
  • 2. 西安科技大学计算机科学与技术学院,西安 710054
  • 3. 西安科技大学理学院,西安 710054
  • 折叠

摘要

Abstract

In view of the detection of change points of strongly mixed heavy tail sequence structures,and in order to avoid the ordinary least square deviation caused by a heavy-tailed sequence,this paper proposes an M-estimate-based ratio-type statistic to test the change point with a heavy-tailed sequence.Under general constraints,it is proved that the limit distribution of the sta-tistics under the null hypothesis is the functionality of Brownian motion,and the consistency under the alternative hypothesis is ob-tained.Aiming at the experience level distortion caused by sequence dependence,the Block Bootstrap sampling method is used to obtain a more accurate critical value,which effectively improves the inspection efficiency.The numerical simulation results show that the M-estimation-based ratio-type test under the Block Bootstrap sampling method can better control the experience level and reasonable experience potential in the change point detection of strongly mixed heavy-tailed sequence structure.Finally,the feasibility of the proposed test method is verified by a set of exchange rate data.

关键词

结构变点/比值型检验/重尾/Block Bootstrap/M估计

Key words

structural change point/ratio-type test/heavy tail/Block Bootstrap/M-estimate

分类

数理科学

引用本文复制引用

朱玲,金浩,乔宝明..基于M估计强混合重尾序列结构变点的鲁棒检验[J].统计与决策,2024,40(8):34-40,7.

基金项目

国家自然科学基金资助项目(71473194) (71473194)

陕西省科技厅自然科学基金资助项目(2020JM513) (2020JM513)

统计与决策

OA北大核心CHSSCDCSSCICSTPCD

1002-6487

访问量0
|
下载量0
段落导航相关论文