| 注册
首页|期刊导航|智能系统学报|基于YOLOv4改进特征融合及全局感知的目标检测算法

基于YOLOv4改进特征融合及全局感知的目标检测算法

程德强 马尚 寇旗旗 张皓翔 钱建生

智能系统学报2024,Vol.19Issue(2):325-334,10.
智能系统学报2024,Vol.19Issue(2):325-334,10.DOI:10.11992/tis.202207018

基于YOLOv4改进特征融合及全局感知的目标检测算法

Target detection algorithm for improving feature fusion and global perception based on YOLOv4

程德强 1马尚 1寇旗旗 2张皓翔 1钱建生1

作者信息

  • 1. 中国矿业大学 信息与控制工程学院, 江苏 徐州 221116
  • 2. 中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116
  • 折叠

摘要

Abstract

The YOLOv4 algorithm has a good balance in detection speed and accuracy,but there are still drawbacks of inaccurate positioning frame and low detection rate,especially for small detection targets and great changes in scale.Dealing with these problems,a new YOLOv4-based target detection algorithm is developed.The algorithm utilizes an enhanced feature fusion module—PANet combined with the bidirectional feature pyramid network instead of PANet to increase cross-scale connections,introduce weights at the output to improve the expressiveness of important features and solve accuracy degradation as a result of multiscale changes.Afterward,a new global association network is adopted to improve the output of the Sigmoid function while reducing the average pooling and computation,strengthen the model's learning of the contextual relationship of the target,and reduce noise interference and global information loss.The RS-OD and NWPU VHR-10 datasets are employed here,with average detection accuracies being enhanced by about 5%and 3%,respectively;the generalization experiment uses the VOC2007 + 2012 public dataset,with the average detec-tion accuracy being enhanced by about 0.6%.The experimental results reveal that the improved algorithm can effect-ively enhance the detection ability of the model.

关键词

YOLOv4/目标检测/特征融合/跨尺度/多尺度变化/全局注意力/平均池化/上下文信息

Key words

YOLOv4/target detection/feature fusion/cross-scale/multiscale variation/global attention/average pool-ing/contextual information

分类

计算机与自动化

引用本文复制引用

程德强,马尚,寇旗旗,张皓翔,钱建生..基于YOLOv4改进特征融合及全局感知的目标检测算法[J].智能系统学报,2024,19(2):325-334,10.

基金项目

国家自然科学基金项目(52204177). (52204177)

智能系统学报

OA北大核心CSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文