| 注册
首页|期刊导航|智能系统学报|高低频通道特征交叉融合的低光人脸检测算法

高低频通道特征交叉融合的低光人脸检测算法

许皓 钱宇华 王克琪 刘畅 李俊霞

智能系统学报2024,Vol.19Issue(2):472-481,10.
智能系统学报2024,Vol.19Issue(2):472-481,10.DOI:10.11992/tis.202208034

高低频通道特征交叉融合的低光人脸检测算法

Low-light face detection method based on the cross fusion of high-and low-frequency channel features

许皓 1钱宇华 2王克琪 3刘畅 1李俊霞1

作者信息

  • 1. 山西大学 大数据科学与产业研究院, 山西 太原 030006||山西大学 计算机与信息技术学院, 山西 太原 030006
  • 2. 山西大学 大数据科学与产业研究院, 山西 太原 030006||山西大学 计算机与信息技术学院, 山西 太原 030006||山西大学 计算智能与中文信息处理教育部重点实验室, 山西 太原 030006
  • 3. 山西大学 大数据科学与产业研究院, 山西 太原 030006
  • 折叠

摘要

Abstract

Face images captured under low-light conditions suffer from significant noise and low contrast,which negat-ively impact the accuracy of existing face detection systems.In addition,existing low-light image detection algorithms struggle to extract information from small facial areas.To tackle these issues,this paper proposes a two-stage face detec-tion algorithm based on deep learning.This algorithm enhances low-light images before initiating the detection process using an established low-light image enhancement method.The objective is to enhance the ability of the detection meth-od to extract facial information.Thus,a new cross-fusion method of high-and low-frequency channel features is de-signed.The first step involves using a separable module for high-and low-frequency channel features,enabling the sep-aration of different scale features.These separated features are then cross-fused to improve the ability of the network to extract high-frequency details and low-frequency color information.This,in turn,improves the performance of the de-tection network.The comparative and ablation experiments validate the effectiveness of the proposed method.The ex-perimental results demonstrate that our method surpasses the baseline method by 4.0%mAP.

关键词

低光人脸检测/高低频通道特征/低光增强/多尺度特征融合/计算机视觉/图像处理/深度学习/频率域分析

Key words

low-light face detection/features of high-and low-frequency channels/low-light enhancement/multiscale feature fusion/computer vision/image processing/deep learning/frequency domain analysis

分类

信息技术与安全科学

引用本文复制引用

许皓,钱宇华,王克琪,刘畅,李俊霞..高低频通道特征交叉融合的低光人脸检测算法[J].智能系统学报,2024,19(2):472-481,10.

基金项目

科技创新2030-"新一代人工智能"重大项目(2021-ZD0112400) (2021-ZD0112400)

国家自然科学基金项目(62136005) (62136005)

山西省揭榜挂帅项目(202201020101006). (202201020101006)

智能系统学报

OA北大核心CSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文