| 注册
首页|期刊导航|中国电机工程学报|基于数据-模型混合驱动的电力系统机电暂态快速仿真方法

基于数据-模型混合驱动的电力系统机电暂态快速仿真方法

王鑫 杨珂 黄文琦 马云飞 耿光超 江全元

中国电机工程学报2024,Vol.44Issue(8):2955-2964,中插2,11.
中国电机工程学报2024,Vol.44Issue(8):2955-2964,中插2,11.DOI:10.13334/j.0258-8013.pcsee.222922

基于数据-模型混合驱动的电力系统机电暂态快速仿真方法

A Fast Electromechanical Transient Simulation Algorithm for Power System Based on Data and Physics Driven Model

王鑫 1杨珂 1黄文琦 2马云飞 1耿光超 1江全元1

作者信息

  • 1. 浙江大学电气工程学院,浙江省 杭州市 310027
  • 2. 南方电网数字电网集团有限公司,广东省 广州市 510700
  • 折叠

摘要

Abstract

Data-driven modeling has changed the traditional modeling paradigm of generators,which makes traditional electromechanical transient time domain simulation methods fail to be directly applied to power system with new paradigm.Thus,an integrating data-and physics-driven time domain simulation(DPD-TDS)algorithm for electromechanical transient simulation is proposed.The state variables and nodal injection currents are calculated through data-driven model,and network equations are used to calculate nodal voltages.And a preprocessing matrix calculation method for convergence of DPD-TDS improvement is proposed.A central processing unit-neural network processing unit(CPU-NPU)heterogeneous computing architecture is designed to speed up simulation.Differential algebraic equations are solved in CPU and the forward inference of data-driven model is executed in NPU.In IEEE-39 and Polish-2383 systems,some or all generators are replaced by data-driven models for verification.The results show that the convergence,accuracy and calculation speed of the proposed algorithm are exceptionally impressive..

关键词

机电暂态/时域仿真/数据-模型混合驱动/收敛性/CPU-NPU异构运算

Key words

electromechanical transient/time-domain simulation/data and physics driven/convergence/central processing unit-neural network processing unit(CPU-NPU)heterogeneous computing

分类

信息技术与安全科学

引用本文复制引用

王鑫,杨珂,黄文琦,马云飞,耿光超,江全元..基于数据-模型混合驱动的电力系统机电暂态快速仿真方法[J].中国电机工程学报,2024,44(8):2955-2964,中插2,11.

基金项目

南方电网数字电网集团有限公司科技项目(670000KK52210032) (670000KK52210032)

国家自然科学基金项目(51977188). Research Project of China Southern Power Grid Digital Power Grid Group Co.,Ltd(6700KK52210032) (51977188)

Project Supported by National Natural Science Foundation of China(51977188). (51977188)

中国电机工程学报

OA北大核心CSTPCD

0258-8013

访问量13
|
下载量0
段落导航相关论文