| 注册
首页|期刊导航|干旱区地理|基于Sentinel-2时序数据的新疆焉耆盆地农作物遥感识别与评估

基于Sentinel-2时序数据的新疆焉耆盆地农作物遥感识别与评估

张旭辉 玉素甫江·如素力 仇忠丽 亚夏尔·艾斯克尔 阿卜杜热合曼·吾斯曼

干旱区地理2024,Vol.47Issue(4):672-683,12.
干旱区地理2024,Vol.47Issue(4):672-683,12.DOI:10.12118/j.issn.1000-6060.2023.262

基于Sentinel-2时序数据的新疆焉耆盆地农作物遥感识别与评估

Remote sensing identification and assessment of crops in the Yanqi Basin,Xinjiang,China based on Sentinel-2 time series data

张旭辉 1玉素甫江·如素力 2仇忠丽 1亚夏尔·艾斯克尔 1阿卜杜热合曼·吾斯曼1

作者信息

  • 1. 新疆师范大学地理科学与旅游学院流域信息集成与生态安全实验室,新疆 乌鲁木齐 830054
  • 2. 新疆师范大学地理科学与旅游学院流域信息集成与生态安全实验室,新疆 乌鲁木齐 830054||新疆干旱区湖泊环境与资源重点实验室,新疆 乌鲁木齐 830054
  • 折叠

摘要

Abstract

To obtain timely and accurate information about crop cultivation in arid zones,this study used the PIE-Engine Studio platform to extract 14 vegetation indices in the Yanqi Basin,Xinjiang,China based on 2022 Senti-nel-2 images and 1948 field location sampling data during the crop reproduction period.Crop planting informa-tion was extracted using the See5.0 decision tree,random forest(RF),and multiple regression(MR)models to se-lect feature parameters.Each model was combined with support vector machine(SVM)algorithms to construct five classification models and five sample segmentation schemes.The best classification scheme was determined by visual interpretation and confusion matrix comparison.The results are as follows:(1)The overall accuracy(OA)and Kappa coefficients of all classification models are above 92.20%and 0.9037,respectively,indicating that it is feasible to extract crop information using the SVM algorithm in the PIE platform.(2)The mean OA and Kappa coefficients of SVM-with-red-edge are 93.77%and 0.9236,which are 0.96%and 0.0120,respectively.(3)The introduction of vegetation index improved the OA and Kappa coefficients of SVM-RF,SVM-MR,and SVM-See5.0 compared with the SVM-with-red-edge method.(4)The mean OA and Kappa coefficient relationships for the five classification models were SVM-RF>SVM-MR>SVM-See5.0>SVM-with-red-edge>SVM-without-red-edge,showing that the inclusion of the red-edge band and vegetation index significantly improved the accuracy of crop identification,with SVM-RF(8:2)being the best classification model with OA and Kappa coefficients of 98.72%and 0.9866,respectively.These results provide new ideas and references for accurate and rapid access to large-scale arid zone crop information.

关键词

农作物/Sentinel-2/支持向量机/PIE-Engine Studio/焉耆盆地

Key words

crop/Sentinel-2/support vector machines/PIE-Engine Studio/Yanqi Basin

引用本文复制引用

张旭辉,玉素甫江·如素力,仇忠丽,亚夏尔·艾斯克尔,阿卜杜热合曼·吾斯曼..基于Sentinel-2时序数据的新疆焉耆盆地农作物遥感识别与评估[J].干旱区地理,2024,47(4):672-683,12.

基金项目

国家自然科学基金项目(U1703341,41764003) (U1703341,41764003)

自治区科技创新基地建设计划项目(2020D04039)资助 (2020D04039)

干旱区地理

OA北大核心CSTPCD

1000-6060

访问量0
|
下载量0
段落导航相关论文