改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测OA北大核心CSTPCD
Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection
针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法.该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重坐标注意力机制,提升模型对空间和通道信息的特征提取能力;三是引入鬼影混洗卷积,在提高精度的同时降低模型参数量和计算量;四是增加大目标检测层,改善特征图中部分缺陷占比较大,导致检测精度低的问题.在NEU-DET和Severstal钢材缺陷数据集进行实验验证,改进后算法与原模型相比,mAP分别提升5.7%和8.5%;参数量和计算量分别降低0.61 M和4.2 G;精确度和召回率分别提升7.1%,1.8%和8.9%,7.0%.实验结果表明,改进后的算法更好地平衡了检测精度和轻量化,为边缘终端设备提供了参考.
To address the problems of diverse and complex shapes of steel surface defects,detection target missing,and large number of algorithm parameters,a lightweight VTG-YOLOv7-tiny steel defect detec-tion algorithm was proposed.The method first designed VoVGA-FPN network to reduce the loss of infor-mation during information transmission and enhance the network feature fusion ability;second,it con-structed a triple coordinate attention mechanism to improve the model's feature extraction ability of spatial and channel information;third,it introduceed ghost shuffle convolution to reduce the model parameters and computation while improving the accuracy;fourth,it added a large target detection layer to improve the problem that some defects in the feature map occupy a large proportion,resulting in low detection accu-racy.The improved algorithm was verified on the NEU-DET and Severstal steel defect datasets.Com-pared with the original model,the mAP of the improved algorithm is increased by 5.7%and 8.5%,re-spectively;the parameters and computation are reduced by 0.61 M and 4.2 G,respectively;the accuracy and recall are increased by 7.1%,1.8%and 8.9%,7.0%,respectively.The experimental results show that the improved algorithm better balances the detection accuracy and lightweight,and provides a refer-ence for edge terminal devices.
梁礼明;龙鹏威;冯耀;卢宝贺
江西理工大学 电气工程与自动化学院,江西 赣州 341000
计算机与自动化
缺陷检测轻量化YOLOv7-tinyVoVGA-FPN网络三重坐标注意力鬼影混洗卷积
defect detectionLightweight YOLOv7-tinyVoVGA-FPN networkTriplet Coordinate Attention(TCA)Ghost Shuffle Convolution(GSConv)
《光学精密工程》 2024 (008)
1227-1240 / 14
国家自然科学基金资助项目(No.51365017,No.6146301);江西省自然科学基金资助项目(No.20192BAB205084);江西省教育厅科学技术研究重点项目(No.GJJ170491)
评论