| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|基于耦合特征LSTM的船舶运动预报方法研究

基于耦合特征LSTM的船舶运动预报方法研究

何国联 姚朝帮 孙小帅 孟凡亮

华中科技大学学报(自然科学版)2024,Vol.52Issue(4):1-7,7.
华中科技大学学报(自然科学版)2024,Vol.52Issue(4):1-7,7.DOI:10.13245/j.hust.240700

基于耦合特征LSTM的船舶运动预报方法研究

Research on ship motion prediction method based on coupled feature LSTM

何国联 1姚朝帮 1孙小帅 2孟凡亮3

作者信息

  • 1. 华中科技大学船舶与海洋工程学院,湖北 武汉 430074
  • 2. 91054部队,北京 102422
  • 3. 中国特种飞行器研究所系统航电研究室,湖北 荆门 448035
  • 折叠

摘要

Abstract

Long short-term memory(LSTM)neural network model was used to predict the motion of ship advancing in waves under different sea states.Aiming at the characteristic that LSTM model was difficult to optimize,a coupled feature LSTM neural network model was proposed.First,the ship motion time series data were normalized.Then,the LSTM model with input layer,hidden layer and output layer was built based on the deep learning framework TensorFlow,and the original data were divided according to different features.Finally,LSTM models with different coupling features were used to predict the tested samples.Results show that the six-feature coupled LSTM neural network model has obvious advantages compared with other LSTM models for the prediction accuracy.The motion prediction error is decreased by 2.1%~12.9%in the level-4 sea state.In the level-5 sea state,the motion prediction error is decreased by 2.4%~12.3%.The six-feature coupled LSTM model can simultaneously output six degrees of freedom(six-DOF)motion with only one calculation,which can reduce the calculation time by 51.4%~82.7%and improve the calculation efficiency.

关键词

六自由度运动/长短期记忆(LSTM)/时间序列/耦合特征/预报精度

Key words

six degrees of freedom(six-DOF)motion/long short-term memory(LSTM)/time series/coupling features/prediction accuracy

分类

交通工程

引用本文复制引用

何国联,姚朝帮,孙小帅,孟凡亮..基于耦合特征LSTM的船舶运动预报方法研究[J].华中科技大学学报(自然科学版),2024,52(4):1-7,7.

基金项目

国家自然科学基金资助项目(52071148) (52071148)

工信部民机专项资助项目(2022KF0031). (2022KF0031)

华中科技大学学报(自然科学版)

OA北大核心CSTPCD

1671-4512

访问量0
|
下载量0
段落导航相关论文